Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement

  • Alireza Pour-Aboughadareh
  • Jafar Ahmadi
  • Ali Ashraf Mehrabi
  • Alireza Etminan
  • Mohammad Moghaddam
  • Kadambot H. M. Siddique
Original Article

Abstract

Wild progenitors of common wheat are a potential source of tolerance to biotic and abiotic stresses. We conducted a glasshouse pot experiment to study genotypic differences in response to drought stress in a collection of 180 accessions of Aegilops and Triticum along with one tolerant and one sensitive control variety. Several physiological traits and chlorophyll fluorescence parameters were evaluated. Our findings indicated that drought significantly reduced shoot fresh (59.45%) and dry (50.83%) weights, stomatal conductance (41.52%) and maximum photosynthetic capacity (41.06%), but increased initial fluorescence (28.10%). Drought stress also decreased the chlorophyll content, relative water content and maximum quantum efficiency by 14.90, 12.13 and 11.42%, respectively. Principal component analysis of the 182 individuals identified three components that explained 57.61 and 61.68% of the total variation in physiological and photosynthetic traits under control and stress conditions, respectively. When grouped into the 12 species tested, the three top components explained 78.22% of the total variation under drought. The means comparison, stress tolerance index and biplot analysis identified five accessions with superior tolerance to drought. Remarkably, four species of wild relatives—Ae. cylindrica (DC genome), Ae. crassa (DM genome), Ae. caudata (C genome) and T. urartu (Au genome)—responded well to drought stress with a lower percentage decline for most traits and high values for the first two components. The potential of these species offers further opportunities for analysis at the molecular and cellular levels to confront with drought stress through a physiological mechanism.

Keywords

Drought stress Maximum fluorescence efficiency Stomatal conductance Wild wheats 

Abbreviations

Chl

Chlorophyll content (SPAD index)

RWC

Relative water content

SFW

Shoot fresh weight

SDW

Shoot dry weight

Gs

Stomatal conductance

Fo

Initial fluorescence

Fv/Fm

Maximum quantum yield of PSII

Fv/Fo

Maximum primary yield of photochemistry of PSII

STI

Drought-stress tolerance index

Supplementary material

11738_2017_2403_MOESM1_ESM.docx (87 kb)
Supplementary material 1 (DOCX 88 kb)

References

  1. Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Bioch 63:49–60. doi:10.1016/j.plaphy.2012.11.004 CrossRefGoogle Scholar
  2. Alptekin B, Budak H (2016) Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genom. doi:10.1007/s10142-016-0487-y Google Scholar
  3. Arabbeigi M, Arzani A, Majidi MM, Kiani R, Tabatabaei BES, Habibi F (2014) Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol Plant 36:2243–2251. doi:10.1007/s11738-014-1602-0 CrossRefGoogle Scholar
  4. Baalbaki R, Hajj-Hassan N, Zurayk R (2006) Aegilops species from semiarid areas of Lebanon: variation in quantitative attributes under water stress. Crop Sci 46:799–806. doi:10.2135/cropsci2005.0120 CrossRefGoogle Scholar
  5. Budak H, Kantar M, Yucebilgili Kurtoglu K (2013) Drought tolerance in modern and wild wheat. Sci World J. doi:10.1155/2013/548246 Google Scholar
  6. Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012. doi:10.3389/fpls.2015.01012 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen Y, Cui JM, Su YQ, Yuan M, Zhang HZ (2015) Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. Front Plant Sci 6:779. doi:10.3389/fpls.2015.00779 PubMedPubMedCentralGoogle Scholar
  8. Chunyan W, Maosong L, Jiqing S, Yonggang C, Xiufen W, Yongfeng W (2008) Differences in stomatal and photosynthetic characteristics of five diploid wheat species. Acta Ecol Sin 28:3277–3283. doi:10.1016/S1872-2032(08)60070 CrossRefGoogle Scholar
  9. Ci D, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010) Genetic variance in cadmium tolerance and accumulation in wheat materials differing in ploidy and genome at seedling stage. J Agron Crop Sci 196:302–310. doi:10.1111/j.1439-037X.2010.00417.x Google Scholar
  10. Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll fluorescence performance index. Environ Pollut 109:501–507. doi:10.1016/S0269-7491(00)00053-1 CrossRefPubMedGoogle Scholar
  11. Cochard H, Coll L, Roux XL, Amegilo T (2002) Unraveling the effects of plant hydraulics on stomatal closer during water stress in walnut. Plant Physio 128:282–290. doi:10.1104/pp.010400 CrossRefGoogle Scholar
  12. Colom MR, Vazzana C (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping love grass plants. Environ Exp Bot 49:135–144. doi:10.1016/S0098-8472(02)00065-5 CrossRefGoogle Scholar
  13. Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:1–16. doi:10.3389/fpls.2013.00442 CrossRefGoogle Scholar
  14. Dhanda S, Sethi GS, Behl K (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12. doi:10.1111/j.1439-037X.2004.00592.x CrossRefGoogle Scholar
  15. Dulai S, Molnar I, Pronay J, Csernak A, Tarnai R, Molnar-Lang M (2006) Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biologica Azegediensis 50:11–17Google Scholar
  16. Econopouly B, Mckay J, Westra P, Reid S, Helm A, Byrne P (2013) Phenotypic diversity of Aegilops cylindrica (jointed goatgrass) accessions from the western United States under irrigated and dryland conditions. Agric Ecosyst Environ 164:244–251. doi:10.1016/j.agee.2012.10.005 CrossRefGoogle Scholar
  17. Ergen NZ, Budak H (2009) Sequencing over 13000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ 32:220–236. doi:10.1111/j.1365-3040.2008.01915.x CrossRefPubMedGoogle Scholar
  18. Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genom 9:377–396. doi:10.1007/s10142-009-0123-1 CrossRefGoogle Scholar
  19. Fernandez GCJ (1993) Effective selection criteria for assessing plant stress tolerance. In: Kuo CG (ed) Adaptation of food crops to temperature and water stress. Shanhua, Taiwan, pp 257–270Google Scholar
  20. Grzesiak MT, Marcinska I, JanoWiak F, Rzepka A, Hura T (2012) The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plant 34:1757–1764. doi:10.10071/s11738-012-0973-3 CrossRefGoogle Scholar
  21. Hairat S, Khurana P (2015) Evaluation of Aegilops tauschii and Aegilops speltoides for acquired thermotolerance: implications in wheat breeding programmes. Plant Physiol Bioch 95:65–74. doi:10.1016/j.plaphy.2015.07.009 CrossRefGoogle Scholar
  22. Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33. doi:10.1016/0168-9452(93)90003-I CrossRefGoogle Scholar
  23. HongBo S, ZongSuo L, MingAn S, ShiMeng S, ZanMin H (2005) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Colloids Surf B 43:221–227. doi:10.1016/j.colsurfb.2005.05.005 CrossRefGoogle Scholar
  24. Jin X, Yang G, Tan C, Zhao C (2015) Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Sci Rep 5:9311. doi:10.1038/srep09311 CrossRefPubMedGoogle Scholar
  25. Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484. doi:10.1007/s00425-010-1309-4 CrossRefPubMedGoogle Scholar
  26. Khalili M, Pour-Aboughadareh AR, Naghavi MR, Mohammad Amini E (2014) Evaluation of drought tolerance in safflower genotypes based on drought tolerance indices. Not Bot Horti Agrobo 42:214–218. doi:10.15835/nbha4219331 Google Scholar
  27. Khalili M, Pour-Aboughadareh A, Naghavi MR (2016) Assessment of drought tolerance in barley: integrated selection criterion and drought tolerance indices. Environ Exp Biol 14:33–41. doi:10.22364/eeb.14.06 CrossRefGoogle Scholar
  28. Khazaei H, Monneveux P, Hongbo S, Mohammady S (2010) Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet Resour Crop Evol 57:307–314. doi:10.1007/s10722-009-9471-x CrossRefGoogle Scholar
  29. Kiani R, Arzani A, Habibi F (2015) Physiology of salinity tolerance in Aegilops cylindrica. Acta Physiol Plant 37:135–145. doi:10.1007/s11738-015-1881-0 CrossRefGoogle Scholar
  30. Kimber G, Feldman M (1987) Wild wheat. An introduction. Special Report, College of Agriculture, University of Missouri 353:132–142 (in Columbia) Google Scholar
  31. Kumar D (2004) Breeding for drought resistance. In: Ashraf M, Harris PJC (eds) Abiotic stresses. CRC Press, Plant resistance through breeding and molecular approaches, pp 145–176Google Scholar
  32. Lee TY, Woo SY, Kwak MJ, Inkyin K, Lee KE, Jang JH, Kim IR (2016) Photosynthesis and chlorophyll fluorescence responses of Populus sibirica to water deficit in a desertification area in Mongolia. Photosynthetica 54:317–320. doi:10.1007/s11099-015-0180-8 CrossRefGoogle Scholar
  33. Li RH, Pei-guo G, Baum M, Grando S, Cecccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agr Sci China 5:751–757. doi:10.1016/S1671-2927(06)60120-X CrossRefGoogle Scholar
  34. Longenberger PS, Smith CW, Thaxton PS, McMichael BL (2006) Development of a screening method for drought tolerance in cotton seedlings. Crop Sci 46:2104–2110. doi:10.2135/cropsci2006.01.0026 CrossRefGoogle Scholar
  35. Lu HB, Qiao YM, Gong XC, Li HQ, Zhang Q, Zhao ZH, Meng LL (2015) Influence of drought stress on the photosynthetic characteristics and dry matter accumulation of hybrid millet. Photosynthetica 53:306–311. doi:10.1007/s11099-015-0120-7 CrossRefGoogle Scholar
  36. Masoomi-Aladizgeh F, Aalami A, Esfahani M, Aghaei MJ, Mozaffari K (2015) Identification of CBF14 and NAC2 genes in Aegilops tauschii associated with resistance to freezing stress. Appl Biochem Biotech 176:1059–1070. doi:10.1007/s12010-015-1629-8 CrossRefGoogle Scholar
  37. Meeks M, Murray SC, Hague S, Hays D (2013) Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 3:135–147. doi:10.3390/agronomy3010135 CrossRefGoogle Scholar
  38. Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66:487–492. doi:10.1016/j.envexpbot.2009.04.003 CrossRefGoogle Scholar
  39. Pace J, Lee N, Naik HS, Ganapathysubramanian B, Lubberstedt T (2014) Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PLoS One 9:e108255. doi:10.1371/journal.pone.0108255 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152. doi:10.1111/j.1365-3040.2006.01588.x CrossRefGoogle Scholar
  41. Pang J, Turner NC, Khan T, Du YL, Xiong JL, Colmer TD, Devilla R, Stefanova K, Siddique KM (2016) Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. J Exp Bot. doi:10.1093/jxb/erw153 PubMedCentralGoogle Scholar
  42. Percival GC, Sheriffs CN (2002) Identification of drought-tolerance woody perennials using chlorophyll fluorescence. J Arboric 28:215–223Google Scholar
  43. Pietragalla J, Pask AJD (2012) Physiological breeding II. In: Pietragalla H, Pask AJD, Mullan D, Reynold MP (eds) A field guide to wheat phenotyping. CIMMYT, Mexico, pp 15–17Google Scholar
  44. Pour-Aboughadareh A, Naghavi MR, Khalili M (2013) Water deficit stress tolerance in some of barley genotypes and landraces under field conditions. Not Sci Biol 5:249–3246Google Scholar
  45. Pour-Aboughadareh A, Mahmoudi M, Moghaddam M, Ahmadi J, Mehrabi AA, Alavikia SS (2017) Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet Resour Crop Evol 64:545–556. doi:10.1007/s10722-016-0381-4 CrossRefGoogle Scholar
  46. Pradhan G, Prasad Vara, Fritz AK, Kirkhan M, Gill B (2012) Response of Aegilops species to drought stress during reproductive stage of development. Func Plant Biol 39:51–59. doi:10.1071/FP11171 CrossRefGoogle Scholar
  47. Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, Najafi F (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol Cracov Bot 53:47–56. doi:10.2478/v10182-011-0007-2 Google Scholar
  48. Ren J, Chen L, Sun D, You FM, Wang J, Peng Y, Nevo E, Beiles A, Sun D, Luo MC, Peng J (2013) SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol Biol 13:169. doi:10.1186/1471-2148-13-169 CrossRefPubMedPubMedCentralGoogle Scholar
  49. SAS Institute (2011) Base SAS 9.1 procedures guide. SAS Institute Inc, CaryGoogle Scholar
  50. Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high F v/F m under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant 153:284–298. doi:10.1111/ppl.12245 CrossRefPubMedGoogle Scholar
  51. Silva M, Jifon J, Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201. doi:10.1590/S1677-04202007000300003 CrossRefGoogle Scholar
  52. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260. doi:10.1104/pp.53.2.258 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sohail Q, Inoue T, Tanaka H, Eltayeb AE, Matsuoka Y, Tsujimouka H (2011) Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed Sci 61:347–357. doi:10.1270/jsbbs.61.347 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Souza CC, Oliveira FA, Silva IF, Amorim Neto MS (2000) Evaluation of methods of available water determination and irrigation management in “terra roxa” under cotton crop. Rev Bras Eng Agr Amb 4:338–342. doi:10.1590/S1415-43662000000300006 CrossRefGoogle Scholar
  55. SPSS (2007) SPSS 16.0 for Windows, 16th (edn). New York, USAGoogle Scholar
  56. Taghipour Z, Asghari Zakaria R, Zare N, Zadeh S (2014) Evaluation of drought stress tolerance in several populations of Aegilops triuncialis. Iran J Rangel For Plant Breed Genet Res 22:55–66Google Scholar
  57. Tian S, Mao X, Zhang H, Chen S, Zhai C, Yang S, Jing R (2013) Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080. doi:10.1093/jxb/ert072 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tomar SMS, Kumar GT (2004) Seedling survivability as a selection criterion for drought tolerance in wheat. Plant Breed 123:392–394. doi:10.1111/j.1439-0523.2004.00993.x CrossRefGoogle Scholar
  59. Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23. doi:10.1023/A:1017562909881 CrossRefGoogle Scholar
  60. Valladares F, Dobarro I, Sbnchez-Gomez D, Pearcy RW (2005) Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. J Exp Bot 56:483–494. doi:10.1093/jxb/eri037 CrossRefPubMedGoogle Scholar
  61. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, WageningenGoogle Scholar
  62. Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Huttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957. doi:10.1093/treephys/28.6.947 CrossRefPubMedGoogle Scholar
  63. Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325. doi:10.1093/jxb/ern185 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2001) Water deficit–induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J l93:196–206. doi:10.2134/agronj2001.931196x CrossRefGoogle Scholar
  65. Yesayan AH, Grigorin KV, Danielian AM, Hovhannisyan NA (2009) Determination of salt tolerance in wild einkorn wheat (Triticum boeoticum Boiss.) under in vitro conditions. Crop Wild Relat 7:4–7Google Scholar
  66. Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci 41:1321–1329. doi:10.2135/cropsci2001.4141321x CrossRefGoogle Scholar
  67. Zamani Bangohari M, Niazi A, Moghaddam AA, Deihimi T, Ebrahimie E (2013) Genome-wide analysis of key salinity-tolerance transporter (HKT;5) in wheat and wild wheat relatives (A and D genomes). In Vitro Cell Dev Biol Plant 49:97–106. doi:10.1007/s11627-012-9478-4 CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2017

Authors and Affiliations

  1. 1.Department of Plant Breeding and Crop ProductionImam Khomeini International UniversityQazvinIran
  2. 2.Department of Agronomy and Plant BreedingIlam UniversityIlamIran
  3. 3.Department of Plant Breeding, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  4. 4.Department of Plant Breeding and BiotechnologyUniversity of TabrizTabrizIran
  5. 5.The UWA Institute of AgricultureThe University of Western AustraliaPerthAustralia

Personalised recommendations