Skip to main content

Glycinebetaine in saline conditions: an assessment of the current state of knowledge

Abstract

Salt stress is one of the environmental threats that have devastating impacts on plant distribution, growth and production. Different plants are believed to have salt tolerance mechanisms that occur at the cellular level. One facet of the cellular mechanisms of adaptation to salinity stress is to accumulate either inorganic and/or organic solutes. Glycinebetaine (GB), as well as other organic solutes, has been referred to as compatible solutes, for the reason that they are innocent with essential biochemical reactions even at high concentrations. GB has been assumed to be involved in osmotic adjustment and/or osmoprotection of cellular functional macromolecules and, hence, can improve tolerance to saline conditions. However, the exact mechanism and direct evidences for such correlative data are still lacking despite many attempts to improve growth under saline conditions by exogenous application as well as genetic engineering of metabolic pathways involved in metabolism of GB. Despite the enormous amount of information accumulated in this regard, the exact function of GB in the adaptation to saline environments is not fully clear to this point, and even GB functions have been argued. Because of that, inconsistencies exist in the published data regarding GB accumulation and functions under salt stress. In this review, we provide an update on evidence supporting each of these arguments to reassess how GB affects plant growth and physiological traits under salt imposition, and whether its effects correlate with salt tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ahmad N, Wyn Jones RG, Jeschke WD (1987) Effect of exogenous glycinebetaine on Na+ transport in barley roots. J Exp Bot 38:913–922

    CAS  Article  Google Scholar 

  2. Ahmad R, Kim MD, Back K, Kim H, Lee H, Kwon S, Murata N, Chung W, Kwak S (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687–698

    CAS  PubMed  Article  Google Scholar 

  3. Ahmad P, Abdel Latef AA, Hashem A, AbdelAllah EF, Gucel S, Tran LP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347. doi:10.3389/fpls.2016.00347

    PubMed  PubMed Central  Google Scholar 

  4. AlHassan M, Chaura J, Lopez-Gresa M, Borsaio O, Daniso E, Donat-Torres M, Mayoral O, Vicente O, Boscaiu M (2016) Native-invasive plants vs. halophytes in Mediterranean salt marshes: stress tolerance mechanisms in two related species. Front Plant Sci 7:473. doi:10.3389/fpls.2016.00473

    Google Scholar 

  5. Almansouri M, Kinet JM, Lutts S (1999) Compared effects of sudden and progressive impositions of salt stress in three durum wheat (Triticum durum Desf.) cultivars. J Plant Physiol 154:743–752

    CAS  Article  Google Scholar 

  6. Alvarez-Gerding X, Espinoza C, Inostroza-Blancheteau C, Arce-Johnson P (2015) Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiol Biochem 92:71–80

    CAS  PubMed  Article  Google Scholar 

  7. Apse MB, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotech 13:146–150

    CAS  PubMed  Article  Google Scholar 

  8. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Article  Google Scholar 

  9. Athar H, Zafar ZU, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci 201:428–442

    CAS  Article  Google Scholar 

  10. Bhattacharya RC, Maheswari M, Dineshkumar V, Kirti BP, Bhat SR, Chopra VL (2004) Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci Hortic 100:215–222

    CAS  Article  Google Scholar 

  11. Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    CAS  Article  Google Scholar 

  12. Campbell JA, Naidu BP, Wilson JR (1999) The effect of glycinebetaine application on germination and early growth of sugarcane. Seed Sci Technol 27:747–752

    Google Scholar 

  13. Cardi M, Castiglia D, Ferrara M, Guerriero G, Chiurazzi M, Esposito S (2015) The effects of salt stress cause a diversion of basal metabolism in barley roots: possible different roles for glucose-6-phosphate dehydrogenase isoforms. Plant Physiol Bochem 86:44–54

    CAS  Article  Google Scholar 

  14. Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG, Fuggi A, Sulpice R (2011) Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. Funct Plant Biol 38:139–150

    CAS  Article  Google Scholar 

  15. Chan Z, Shi H (2016) Improved abiotic stress tolerance of Bermuda grass by exogenous small molecules. Plant Signal Behav 10:e991577. doi:10.4161/15592324.2014.991577

    Article  CAS  Google Scholar 

  16. Cha-um S, Kirdmanee C (2010) Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric For 34:517–527

    CAS  Google Scholar 

  17. Cha-um S, Supaibulwatana K, Kirdmanee C (2007) Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt-tolerant and salt-sensitive lines of indica rice (Oryza sativa L. ssp. indica) in response to salt stress. J Agron Crop Sci 193:157–166

    CAS  Article  Google Scholar 

  18. Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    CAS  PubMed  Article  Google Scholar 

  19. Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Article  CAS  Google Scholar 

  20. Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    CAS  PubMed  Article  Google Scholar 

  21. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Article  Google Scholar 

  22. Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Croatia, pp 283–308

    Google Scholar 

  23. Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley root. Plant Cell Physiol 46:1924–1933

    CAS  PubMed  Article  Google Scholar 

  24. Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    CAS  PubMed  Article  Google Scholar 

  25. Cuin TA, Shabala S (2008) Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stress-induced reactive oxygen species. Plant Signal Behav 3:207–208

    PubMed  PubMed Central  Article  Google Scholar 

  26. Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:1110–1119

    CAS  Article  Google Scholar 

  27. Das SK, Patra JK, Thatoi H (2016) Antioxidative response to abiotic and biotic stresses in mangrove plants: a review. Int Rev Hydrobiol 101:3–19

    Article  CAS  Google Scholar 

  28. Demiral T, Turkan I (2006) Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Eviron Exp Bot 56:247–257

    Google Scholar 

  29. Duan XG, Song YJ, Yang A, Zhang J (2009) The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX. Physiol Plant 135:281–295

    CAS  PubMed  Article  Google Scholar 

  30. Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK (2007) Membrane-trafficking RabA4c involved in the effect of glycinebetaine on recovery from chilling stress in Arabidopsis. Physiol Plant 130:511–518

    CAS  Article  Google Scholar 

  31. Engle JS, Lipps PE, Graham TL, Boehm MJ (2004) Effects of choline, betaine, and wheat florat extracts on growth of Fusarium graminearum. Plant Dis 88:175–180

    CAS  Article  Google Scholar 

  32. Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Fu X, Khan E, Hu S, Fan Q, Liu J (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliate L. Raf). Environ Exp Bot 74:106–113

    CAS  Article  Google Scholar 

  34. Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Garg BK (2000) Nutrient uptake and management under drought: nutrient moisture interaction. Curr Agric 27:1–8

    Google Scholar 

  36. Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 40:805–818

    CAS  Google Scholar 

  37. Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168:1286–1294

    CAS  PubMed  Article  Google Scholar 

  38. Grigore M, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotechnol 5:12–19

    Google Scholar 

  39. Grote EM, Ejeta G, Rhodes D (1994) Inheritance of glycinebetaine deficiency in sorghum. Crop Sci 34:1217–1220

    CAS  Article  Google Scholar 

  40. Gurel F, Ozturk ZN, Ucarli C, Rosellini D (2016) Barley genes as tools to confer abiotic stress tolerance in crops. Front Plant Physiol 7:1137. doi:10.3389/fpls.2016.01137

    Google Scholar 

  41. Hare PD, Cress WA, van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    CAS  Article  Google Scholar 

  42. Hariadi Y, Marandon K, Tian Y, Jacobsen S, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    CAS  PubMed  Article  Google Scholar 

  43. Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  44. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Article  Google Scholar 

  45. Hasthanasombut S, Valentine N, Supaibulwatana K, Mii M, Nakamura I (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4:75–83

    Article  Google Scholar 

  46. Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    CAS  PubMed  Article  Google Scholar 

  47. Heidari A, Toorchi M, Bandehagh A, Shakiba M (2011) Effect of NaCl stress on growth, water relations, organic and inorganic osmolytes accumulation in sunflower (Helianthus annuus L.) lines. Univ J Environ Res Techn 1:351–362

    CAS  Google Scholar 

  48. Held C, Sadowski G (2016) Compatible solutes: thermodynamic properties relevant for effective protection against osmotic stress. Fluid Phase Equil 407:224–235

    CAS  Article  Google Scholar 

  49. Hester MW, Mendelssohn IA, Mckee KL (2001) Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physical constraints. Environ Exp Bot 46:277–297

    CAS  Article  Google Scholar 

  50. Heuer B (2003) Influence of exogenous application of proline and glycine betaine on growth of salt-stressed tomato plants. Plant Sci 165:693–699

    CAS  Article  Google Scholar 

  51. Hincha DK (2006) High concentrations of the compatible solute glycinebetaine destabilize model membranes under stress conditions. Cryobiol 53:58–68

    CAS  Article  Google Scholar 

  52. Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Hu L, Hu T, Zhang X, Pang H, Fu J (2012) Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J Am Soc Hortic Sci 137:38–46

    CAS  Google Scholar 

  54. Huang J, Hijri R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Ibrahim M, Anjum A, Khaliq N, Iqbal M, Athar H (2006) Four foliar applications of glycinebetaine did not alleviate adverse effects of salt stress on growth of sunflower. Pak J Bot 38:1561–1570

    Google Scholar 

  56. John E (2002) Candidate effector and regulator genes activated by glycinebetaine in Arabidopsis. Am Soc Plant Biol Abstr 653

  57. Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi A (2009) Glycinebetaine-induced water stress tolerance in coda-expressing indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7:526–572

    Article  CAS  Google Scholar 

  58. Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Nakase AM, Tabake T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene from barley. Plant Cell Environ 23:107–114

    CAS  Article  Google Scholar 

  59. Koyro H, Geissler N, Seenivasan R, Huchzermeyer B (2010) Plant stress physiology: physiological and biochemical strategies allowing plants/crops to thrive under ionic stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. CRC Press, New York, pp 1051–1092

    Google Scholar 

  60. Koyro H, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Chapter  Google Scholar 

  61. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene incarrot cutlured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling network involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front Plant Sci 6:427. doi:10.3389/fpls.2015.00427

    PubMed  PubMed Central  Article  Google Scholar 

  64. Lai S, Lai M, Lee R, Chen Y, Yen HE (2014) Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Mol Biol 85:429–441

    CAS  PubMed  Article  Google Scholar 

  65. Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Eviron Exp Bot 63:19–27

    CAS  Article  Google Scholar 

  66. Li Q, Gao X, Yu X, Wang X, An L (2003) Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett 25:1431–1436

    CAS  PubMed  Article  Google Scholar 

  67. Li M, Guo S, Xu Y, Meng Q, Li G, Yang X (2014) Glycine betaine-mediated potentiation of HSP gene expression involves calcium signaling pathways in tobacco exposed to NaCl stress. Physiol Plant 150:63–78

    CAS  PubMed  Article  Google Scholar 

  68. Liu ZH, Zhang HM, Li GL, Guo XL, Chen SY, Liu GB, Zhang YM (2011) Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica 178:363–372

    CAS  Article  Google Scholar 

  69. Lodeyro AF, Carrillo N (2015) Salt stress in higher plants: mechanisms of toxicity and defensive responses. In: Tripathi BN, Muller M (eds) Stress responses in plants. Springer, Switzerland, pp 1–33

    Chapter  Google Scholar 

  70. Lutts S (2000) Exogenous glycine betaine reduces sodium accumulation in salt-stressed rice plants. Int Rice Res Notes 25:39–40

    Google Scholar 

  71. Maimaiti A, Yunus Q, Iwanaga F, Mori N, Tanaka K, Yamanaka N (2014) Effects of salinity on growth, photosynthesis, inorganic and organic osmolyte accumulation in Elaeagnus oxycarpa seedlings. Acta Physiol Plant 36:881–892

    CAS  Article  Google Scholar 

  72. Mäkela P, Poltonen-Sainio P, Jokinen K, Pehu E, Setala H, Hinkkanen R, Somersalo S (1998) Effect of foliar application of glycine betaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- and drought-stressed plants. Aust J Plant Physiol 25:655–663

    Article  Google Scholar 

  73. Malekzadeh P (2015) Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol Mol Biol Plants 21:225–232

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol Biochem 36:767–772

    CAS  Article  Google Scholar 

  75. Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants o salinity stress. Biol Plant 43:491–500

    CAS  Article  Google Scholar 

  76. Mansour MMF (2013) Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57:1–10

    CAS  Article  Google Scholar 

  77. Mansour MMF (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800

    CAS  PubMed  Article  Google Scholar 

  78. Mansour MMF, Salama KHA, Al-Mutawa MM (2003) Transport proteins and salt tolerance in plants. Plant Sci 164:891–900

    CAS  Article  Google Scholar 

  79. Mansour MMF, Salama KHA, Allam HYH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev 81:416–451

    Article  Google Scholar 

  80. Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Article  CAS  Google Scholar 

  81. McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. McNeil SD, Nuccio ML, Ziemak MJ, Hanson AD (2001) Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. PNAS 98:10001–10005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Mickelbart MV, Chapman P, Collier-Christian L (2006) Endogenous levels and exogenous application of glycinebetaine to grapevines. Sci Hortic 111:7–16

    CAS  Article  Google Scholar 

  84. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    CAS  PubMed  Article  Google Scholar 

  85. Muhammad I, Ambreen A, Nabeela K (2006) Four foliar application of glycine betaine did not alleviate advers effects of salt stress on growth of sunflower. Pak J Bot 38:1561–1570

    Google Scholar 

  86. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Article  Google Scholar 

  87. Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, India, pp 37–68

    Chapter  Google Scholar 

  88. Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16:487–496

    CAS  PubMed  Article  Google Scholar 

  89. Nuccio ML, McNeil SD, Ziemak MJ, Hanson AD, Jain RK, Selvaraj G (2000) Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metab Eng 2:300–311

    CAS  PubMed  Article  Google Scholar 

  90. Pan Y, Guo H, Wang S, Zhao B, Zhang J, Ma Q, Yin H, Bao A (2016) The photosynthetic, NaC/KC homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Front Plant Sci 7:848. doi:10.3389/fpls.2016.00848

    PubMed  PubMed Central  Google Scholar 

  91. Paradisone V, Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Esposito S, Ruiz JM (2015) Roles of some nitrogenous compounds protectors in the resistance to zinc toxicity in Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. Acta Physiol Plant 37:137. doi:10.1007/s11738-015-1893-9

    Article  CAS  Google Scholar 

  92. Pardo-Domenech LL, Tifrea A, Grigore MN, Boscaiu M,Vicente O (2015) Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosyst 149, doi:10.1080/11263504.2014.990943

  93. Park E, Jeknic Z, Pino M, Murata N, Chen TH (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    CAS  PubMed  Article  Google Scholar 

  94. Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  95. Piqueras A, Hernandez JM, Olmos E, Hellin E, Sivella F (1996) Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell Tissue Organ Cult 45:53–60

    CAS  Article  Google Scholar 

  96. Pittaro G, Caceres L, Bruno C, Tomas A, Bustos D, Monteoliva M, Ortega L, Taleisnik E (2015) Salt tolerance variability among stress-selected Panicum coloratum cv. Klein plants. Grass Forage Sci. doi:10.1111/gfs.12206

  97. Pottosin I, Bondles-Alatorre E, Shabala S (2014) Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses. FEBS Lett 588:3918–3923

    CAS  PubMed  Article  Google Scholar 

  98. Prasad KVS, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern. with a bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6:489–499

    CAS  Article  Google Scholar 

  99. Rahman MS, Miyake H, Taheoka Y (2002) Effects of exogenous glycine betaine on growth and ultrastructure of salt –stressed rice seedlings (Oryza sativa L.). Plant Prod Sci 5:33–44

    CAS  Article  Google Scholar 

  100. Rhodes DP, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    CAS  Article  Google Scholar 

  101. Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073

    CAS  PubMed  Article  Google Scholar 

  102. Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotech 26:115–124

    CAS  PubMed  Article  Google Scholar 

  103. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571. doi:10.3389/fpls.2016.00571

    PubMed  PubMed Central  Article  Google Scholar 

  104. Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    CAS  PubMed  Article  Google Scholar 

  105. Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    CAS  PubMed  Article  Google Scholar 

  107. Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    CAS  PubMed  Article  Google Scholar 

  108. Salama KHA, Mansour MMF (2015) Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol Plant 37:170. doi:10.1007/s11738-015-1934-4

    Article  CAS  Google Scholar 

  109. Salama KHA, Mansour MMF, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  110. Salama KHA, Mansour MMF, Al-Malawi HA (2015) Glycinebetaine priming improves salt tolerance of wheat. Biologia 70:1334–1339

    CAS  Article  Google Scholar 

  111. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol 107:631–638

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja N, Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 197–232

    Chapter  Google Scholar 

  113. Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    PubMed  PubMed Central  Article  Google Scholar 

  115. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Article  Google Scholar 

  116. Sobahan MA, Arias CR, Okuma E, Shimoishi Y, Nakamura Y, Hirai Y, Mori IC, Murata Y (2009) Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings. Biosci Biotechnol Biochem 73:2037–2042

    CAS  PubMed  Article  Google Scholar 

  117. Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress- protectant glycine betaine. J Exp Bot 57:1129–1135

    CAS  PubMed  Article  Google Scholar 

  118. Sulpice R, Gibon Y, Cornic G, Larher FR (2002) Interaction between exogenous GB and the photorespiratory pathway in canola leaf discs. Physiol Plant 116:460–467

    CAS  Article  Google Scholar 

  119. Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen THH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J 36:165–176

    CAS  PubMed  Article  Google Scholar 

  120. Szabados L, Kovacs H, Zilberstein A, Bouchereau A (2011) Plants in extreme environments: importance of protective compounds in stress tolerance. Adv Bot Res 57:105–150

    CAS  Article  Google Scholar 

  121. Takabe T, Hayashi Y, Tanaka A, Takabe T, Kishitani S (1998) Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants. In: Proceedings of the international workshop on breeding and biotechnology for environmental stress in rice, Hokkaido national agriculture experiment station and Japan international science and technology exchange center, Sapporo, Japan, pp 63–68

  122. Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tiss Organ Cult 118:77–86

    CAS  Article  Google Scholar 

  123. Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  124. Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    CAS  PubMed  Article  Google Scholar 

  125. Tuteja N, Singh LP, Gill SS, Gill R, Tuteja R (2012) Salinity stress: a major constraint in crop production. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress, 1st edn. Wiley-VCH Verlag GmbH, New York, pp 71–96

    Chapter  Google Scholar 

  126. Uosukainen M, Rantala S, Manninen V, Vestberg M (2000) Improvement of microplant establishment through in vitro and ex vitro exogenous chemical applications. Acta Hortic 530:325–331

    Article  Google Scholar 

  127. Varshney KA, Gangwar LP, Goel N (1988) Choline and betaine accumulation in Trifolium alexandrinum L. during salt tolerance. Egypt J Bot 31:81–86

    CAS  Google Scholar 

  128. Waditee R, Bhuiyan NH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycine betaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. PNAS 102:1318–1323

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance—role of glycine betaine. Curr Genom 14:157–165

    CAS  Article  Google Scholar 

  130. Widodo Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Wilson S (2001) Frost management in cool climate vineyards. Final report to grape and wine research and development corporation, Australia

    Google Scholar 

  132. Wyn Jones RG, Gorham J, McDonnell E (1984) Organic and inorganic solutes as selection criteria for salt tolerance. In: Staples R, Toennissen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 189–203

    Google Scholar 

  133. Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352

    CAS  Article  Google Scholar 

  134. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    CAS  PubMed  Article  Google Scholar 

  135. Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid- expressed choline monooxygenase gene improved salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    CAS  PubMed  Article  Google Scholar 

  136. Zhang Y, Primavesi L, Jhurreea D (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose- 6-phosphate. Plant Physiol 149:1860–1871

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Zhou S, Chen X, Xue X, Zhang X, Li Y (2007) Physiological and growth responses of tomato progenies harboring the betaine aldehyde dehydrogenase gene to salt stress. J Integr Plant Biol 49:628–637

    CAS  Article  Google Scholar 

  138. Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30:369–376

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Magdy F. Mansour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K Apostol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansour, M.M.F., Ali, E.F. Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Physiol Plant 39, 56 (2017). https://doi.org/10.1007/s11738-017-2357-1

Download citation

Keywords

  • Compatible solutes
  • Exogenous application
  • Genetic engineering
  • Glycinebetaine
  • Salinity stress
  • Salt tolerance