Skip to main content

Advertisement

Log in

Graft-transmissible resistance of cherry pepper (Capsicum annuum var. cerasiforme) to powdery mildew (Leveillula taurica) is associated with elevated superoxide accumulation, NADPH oxidase activity and pathogenesis-related gene expression

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We found that resistance to pepper powdery mildew (PM) (Leveillula taurica) develops in a sweet pepper (Capsicum annuum) cultivar (‘Totál’) when grafted on a resistant cherry pepper (C. annuum var. cerasiforme) rootstock (cv. Szentesi). Resistance is manifested both towards PM symptoms and pathogen accumulation. In healthy, uninfected plants PM-resistance can be predicted by enhanced accumulation of the reactive oxygen species (ROS) superoxide (O .−2 ) and activity of NADPH oxidase, the enzyme mainly responsible for pathogenesis-related superoxide generation. In L. taurica-inoculated PM-resistant ‘Szentesi’ high levels of superoxide and NADPH oxidase activity are sustained even 45 days after inoculation, as opposed to PM-susceptible ‘Totál’. This is also true for ‘Totál’ grafted on resistant ‘Szentesi’ rootstocks, where PM resistance, enhanced superoxide production and NADPH oxidase activity is likely due to an unknown, graft-transmitted signal. To further elucidate the mechanisms of graft-transmissible PM-resistance we monitored expression of pathogenesis-related (PR) genes in healthy and infected plants. In healthy plants, expression of CaPR-1 is several times higher in leaves of PM-resistant pepper than in sensitive plants, while high expression of CaPR-2 (glucanase) does not entirely correlate with PM-resistance, being detectable only in PM-resistant ‘Szentesi’. However, during advanced stages of PM-pathogenesis (45 DAI) expression of CaPR-1 and CaPR-2 is by far the highest in PM-susceptible ‘Totál’. Our results suggest that the direct biochemical cause of graft-transmissible PM-resistance in pepper is the enhanced accumulation of NADPH oxidase-generated superoxide. To our knowledge, this is the first report on the role of ROS (superoxide) in graft-transmissible, pathogen-specific disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ádám AL, Farkas T, Somlyai G, Hevesi M, Király Z (1989) Consequence of O .−2 generation during a bacterially induced hypersensitive reaction in tobacco: deterioration of membrane lipids. Physiol Mol Plant Pathol 34:13–26. doi:10.1016/0885-5765(89)90013-1

    Article  Google Scholar 

  • Ádám A, Deising H, Barna B, Gullner G, Király Z, Mendgen K (1997) Imbalances in free radical metabolism: roles in the induction of hypersensitive response and local acquired resistance of plants. In: K Rudolph, TJ Burr, JW Mansfield, D Stead, A Vivian, J von Kiezell (eds) Pseudomonas syringae Pathovars and related pathogens (developments in plant pathology), vol 9. Kluwer Academic Publishers, London, pp 111–121

  • Al-Mawaali QS, Al-Sadi AM, Khan AJ, Al-Hasani HD, Deadman MK (2012) Response of cucurbit rootstocks to Pythium aphanidermatum. Crop Protect 42:64–68. doi:10.1016/j.cropro.2012.07.017

    Article  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784. doi:10.1016/S0092-8674(00)81405-1

    Article  CAS  PubMed  Google Scholar 

  • Aver’yanov AA, Lapikova VP (1988) Fungitoxicity mediated by active oxygen species in rice leaf diffusates. Fiziol Rastenii 35:1142–1151

    Google Scholar 

  • Bacsó R, Hafez YM, Király Z, Király L (2011) Inhibition of virus replication and symptom expression by reactive oxygen species in tobacco infected with Tobacco mosaic virus. Acta Phytopathol Entomol Hung 46:1–10. doi:10.1556/APhyt.46.2011.1.1

    Article  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321. doi:10.1146/annurev.py.33.090195.001503

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, Ramonell KM, Somerville S (2010) ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS One 5:e14426. doi:10.1371/journal.pone.0014426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerkauskas RF, Buonassisi A (2003) First report of powdery mildew of greenhouse pepper caused by Leveillula taurica in British Columbia, Canada. Plant Dis 87:1151–1151. doi:10.1094/PDIS.2003.87.9.1151C

    Article  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Doke N (1985) NADPH-dependent O ·−2 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322

    Article  CAS  Google Scholar 

  • Doke N, Ohashi Y (1988) Involvement of an O ·−2 generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol Mol Plant Pathol 32:163–175. doi:10.1016/S0885-5765(88)80013-4

    Article  CAS  Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komandera E, Lassiga R, Wittea CP, Schulzeb WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci USA 110:8744–8749. doi:10.1073/pnas.1221294110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Zahaby HM, Hafez YM, Király Z (2004) Effect of reactive oxygen species on plant pathogens in planta and on disease symptoms. Acta Phytopathol Entomol Hung 39:325–345

    Article  CAS  Google Scholar 

  • Fodor J, Hideg É, Kecskés A, Király Z (2001) In vivo detection of tobacco mosaic virus-induced local and systemic oxidative burst by electron paramagnetic resonance spectroscopy. Plant Cell Physiol 42:775–779. doi:10.1093/pcp/pce096

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630. doi:10.1016/j.tplants.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  • Golecki B, Schulz A, Carstens-Behrens U, Kollmann R (1998) Evidence for graft transmission of structural phloem proteins or their precursors in heterografts of Cucurbitaceae. Planta 206:630–640. doi:10.1007/s004250050441

    Article  CAS  Google Scholar 

  • Guan W, Zhao X (2012) Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 47:164–170

    CAS  Google Scholar 

  • Hafez YM, Bacsó R, Király Z, Künstler A, Király L (2012) Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102:848–856. doi:10.1094/PHYTO-01-12-0012-R

    Article  CAS  PubMed  Google Scholar 

  • Hajianfar R, Kolics B, Cernák I, Wolf I, Polgár Z, Taller J (2016) Expression of biotic stress response genes to Phytophthora infestans inoculation in White Lady, a potato cultivar with race-specific resistance to late blight. Physiol Mol Plant Pathol 93:22–28. doi:10.1016/j.pmpp.2015.12.001

    Article  CAS  Google Scholar 

  • He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66:270–278. doi:10.1016/j.envexpbot.2009.02.007

    Article  CAS  Google Scholar 

  • Höller K, Király L, Künstler A, Müller M, Gullner G, Fattinger M, Zechmann B (2010) Enhanced glutathione metabolism is correlated with sulfur induced resistance in Tobacco mosaic virus-infected genetically susceptible Nicotiana tabacum plants. Mol Plant Microbe Interact 23:1448–1459. doi:10.1094/MPMI-05-10-0117

    Article  PubMed  Google Scholar 

  • Jones AM, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Jordan CM, Wakeman RJ, DeVay JE (1992) Toxicity of free riboflavine and methionine riboflavin solutions to Phytophthora infestans and the reduction of potato late blight disease. Can J Microbiol 38:1108–1111. doi:10.1139/m92-182

    Article  CAS  Google Scholar 

  • Kadota Y, Shirasu K, Zipfel C (2015) Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol 56:1472–1480. doi:10.1093/pcp/pcv063

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Sharma A, Guruprasad K, Pati PK (2014) Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 32:551–563. doi:10.1016/j.biotechadv.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92. doi:10.1093/jxb/erm176

    Article  CAS  PubMed  Google Scholar 

  • King SR, Davis AR, Liu W, Levi A (2008) Grafting for disease resistance. HortScience 43:1673–1676

    Google Scholar 

  • Király Z, El-Zahaby H, Galal A, Abdou S, Ádám A, Barna B, Klement Z (1993) Effect of oxy free radicals on plant pathogenic bacteria and fungi and on some plant diseases. In: Mózsik GY, Emerit I, Fehér J, Matkovics B, Vincze Á (eds) Oxygen free radicals and scavengers in the natural sciences. Akadémiai Kiadó, Budapest, pp 9–19

    Google Scholar 

  • Király L, Kumar J, Hückelhoven R, Kogel K-H (2002) mlo5, a resistance gene effective against a biotrophic pathogen (Blumeria graminis f. sp. hordei) confers enhanced susceptibility of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus). Acta Biol Szeged 46:135–136

    Google Scholar 

  • Király L, Hafez YM, Fodor J, Király Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotisation in tobacco at high temperature is associated with down-regulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808. doi:10.1099/vir.0.83328-0

    Article  PubMed  Google Scholar 

  • Künstler A, Bacsó R, Hafez YM, Király L (2015) Reactive oxygen species and plant disease resistance. In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Switzerland, pp 269–303

    Chapter  Google Scholar 

  • Lantos F (2011) Investigations on the development and symptoms of calcium deficiency in pepper production (in Hungarian). Doctoral (Ph.D.) Dissertation, Szent István University, Gödöllő

  • Lehmann S, Serrano M, L’Haridon F, Tjamos SE, Metraux J-P (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112:54–62. doi:10.1016/j.phytochem.2014.08.027

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593. doi:10.1016/0092-8674(94)90544-4

    Article  CAS  PubMed  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232. doi:10.1146/annurev.arplant.56.032604.144145

    Article  CAS  PubMed  Google Scholar 

  • Louws FJ, Rivard CL, Kubota C (2010) Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hortic 127:127–146

    Article  Google Scholar 

  • Manandhar HK, Mathur SB, Smedegaard-Petersen V, Thordal-Christensen H (1999) Accumulation of transcripts of pathogenesis-related proteins and peroxidase in rice plants triggered by Pyricularia oryzae, Bipolaris sorokiniana and u.v. light. Physiol Mol Plant Pathol 55:289–295

    Article  CAS  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15. doi:10.1016/j.tplants.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl J, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45. doi:10.1126/scisignal.2000448

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309. doi:10.1016/j.tplants.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875. doi:10.1126/science.1187959

    Article  CAS  PubMed  Google Scholar 

  • Mudge K, Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. Hortic Rev 35:437–493. doi:10.1002/9780470593776.ch9

    Google Scholar 

  • Ouf MF, Gazar AA, Shehata ZA, El-S Abdou, Király Z, Barna B (1993) The effect of superoxide anion on germination and infectivity of wheat stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and Henn.) uredospores. Cereal Res Commun 21:31–37

    CAS  Google Scholar 

  • Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116. doi:10.1126/science.1147113

    Article  CAS  PubMed  Google Scholar 

  • Pogány M, von Rad U, Grün S, Dongó A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J (2009) Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiol 151:1459–1475. doi:10.1104/pp.109.141994

    Article  PubMed  PubMed Central  Google Scholar 

  • Proels RK, Oberhollenzer K, Pathuri IP, Hensel G, Kumlehn J, Hückelhoven R (2010) RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 23:1143–1150. doi:10.1094/MPMI-23-9-1143

    Article  CAS  PubMed  Google Scholar 

  • Rauscher M, Ádám AL, Wirtz S, Guggenheim R, Mendgen K, Deising HB (1999) PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant J 19:625–633. doi:10.1046/j.1365-313x.1999.00545.x

    Article  CAS  PubMed  Google Scholar 

  • Reiss E, Bryngelsson T (1996) Pathogenesis-related proteins in barley leaves, induced by infection with Drechslera teres (Sacc.) Shoem. and by treatment with other biotic agents. Physiol Mol Plant Pathol 49:331–341. doi:10.1006/pmpp.1996.0058

    Article  CAS  Google Scholar 

  • Sakata Y, Sugiyama M, Ohara T, Morishita M (2006) Influence of rootstocks on the resistance of grafted cucumber (Cucumis sativus L.) scions to powdery mildew (Podosphaera xanthii U. Braun & N. Shishkoff). J Jpn Soc Hortic Sci 75:135–140

    Article  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224. doi:10.1007/s00299-005-0928-x

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss H, Dechert C, Király L, Fodor J, Michel K, Kogel K-H, Hückelhoven R (2003) Functional assessment of the pathogenesis-related protein PR-1b in barley. Plant Sci 165:1275–1280. doi:10.1016/S0168-9452(03)00336-4

    Article  CAS  Google Scholar 

  • Shang J, Xi DH, Yuan S, Xu F, Xu MY, Qi HL, Wang SD, Huang QR, Wen L, Lin HH (2010) Difference of physiological characters in dark green islands and yellow leaf tissue of Cucumber mosaic virus (CMV)-infected Nicotiana tabacum leaves. Z Naturforsch 65c:73–78

  • Silvar C, Merino F, Díaz J (2008) Differential activation of defense-related genes in susceptible and resistant pepper cultivars infected with Phytophthora capsici. J Plant Physiol 165:1120–1124. doi:10.1016/j.jplph.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100. doi:10.1038/nri3141

    Article  CAS  PubMed  Google Scholar 

  • Taller J, Hirata Y, Yagishita N, Kita M, Ogata S (1998) Graft-induced genetic changes and the inheritance of several characteristics in pepper (Capsicum annuum L.). Theor Appl Genet 97:705–713

    Article  CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429. doi:10.1111/j.1399-3054.2009.01326.x

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress cell death in Arabidopsis thaliana. Nat Gen 37:1130–1134. doi:10.1038/ng1639

    Article  CAS  Google Scholar 

  • Tsaballa A, Athanasiadis C, Pasentsis K, Ganopoulos I, Nianiou-Obeidat I, Tsaftaris A (2013) Molecular studies of inheritable grafting induced changes in pepper (Capsicum annuum) fruit shape. Sci Hortic 149:2–8

    Article  CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.phyto.44.070505.143425

    Article  PubMed  Google Scholar 

  • Wallis CM, Wallingford AK, Chen J (2013) Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease. Frontiers Plant Sci 4 (article 502). doi:10.3389/fpls.2013.00502

  • Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, Miller AJ (2016) Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci 21:418–437. doi:10.1016/j.tplants.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Wei GP, Yang LF, Zhu YL, Chen G (2009) Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Sci Hortic 120:443–451

    Article  CAS  Google Scholar 

  • Wu R, Wang X, Lin Y, Ma Y, Liu G, Yu X, Zhong S, Liu B (2013) Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS One 8:e61995. doi:10.1371/journal.pone.0061995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wutscher HK (1979) Citrus rootstocks. Hortic Rev 1:237–269

    Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Tadao A, Chen Z, Ju JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814. doi:10.1104/pp.109.138230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718. doi:10.1105/tpc.008680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y, Toyoda H, Wolters A-MA, Visser RGF, Bai Y (2013a) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One 8:e70723. doi:10.1371/journal.pone.0070723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RGF, Toyoda H, Kiss L, Bai Y (2013b) Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103:623–632. doi:10.1094/PHYTO-08-12-0198-R

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The help of Dr. József Fodor (Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences) in NADPH oxidase activity assays is gratefully acknowledged. Thanks are also due to Prof. Zoltán Király (PPI, CAR, HAS) for his valuable suggestions in the initial stages of the work. This research was supported by grants of the Hungarian National Research, Development and Innovation Office (NKFIH K111995, K112146 and PD108455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lóránt Király.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E Kuzniak-Gebarowska.

R. Albert and A. Künstler contributed equally to this work and are considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, R., Künstler, A., Lantos, F. et al. Graft-transmissible resistance of cherry pepper (Capsicum annuum var. cerasiforme) to powdery mildew (Leveillula taurica) is associated with elevated superoxide accumulation, NADPH oxidase activity and pathogenesis-related gene expression. Acta Physiol Plant 39, 53 (2017). https://doi.org/10.1007/s11738-017-2353-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2353-5

Keywords

Navigation