Recombinant pharmaceutical protein production in plants: unraveling the therapeutic potential of molecular pharming

  • Vijaya R. Dirisala
  • Rahul R. Nair
  • Krupanidhi Srirama
  • Prakash Narayana Reddy
  • K. R. S. Sambasiva Rao
  • N. Satya Sampath Kumar
  • Giridhar Parvatam
Review

Abstract

There is an increasing demand for the generation of recombinant pharmaceutical proteins for a wide array of therapeutic applications. In comparison to bacterial, yeast and animal cells, the production of recombinant proteins in plants with economic and therapeutic importance has only started recently. The most important prerequisite of any expression systems is that it should be simple and inexpensive. In this regard, plant-based expression has emerged an as accepted alternative to conventional expression platforms due to economic feasibility, rapid scalability, higher stability of recombinant proteins, safety due to lack of harmful substances (human, animal pathogens and pyrogens) and capability of producing proteins with desired secondary modifications. Heterologous expression using plants has played a pivotal role in the development of a myriad of recombinant proteins, including neutraceuticals and monoclonal antibodies being utilized in various therapeutic approaches. This paper presents an overview about the current status, various strategies and advantages of pharmaceutical protein production in plant expression systems. We also present a summary of expression of therapeutic monoclonal antibodies, vaccines, clinical trials and the regulatory aspects of plant-based expression. Furthermore, the challenges encountered in plant expression such as costs associated with existing purification strategies are discussed.

Keywords

Therapeutic proteins Heterologous expression Transgenic plants Edible vaccines Clinical trials 

Abbreviations

AAD

Antibiotic-associated diarrhea

Mab

Monoclonal antibody

ScFv

Single chain variable fragment

PMP

Plant-made pharmaceuticals

References

  1. Altman A, Hasegawa PM (2011) Plant biotechnology and agriculture: prospects for the 21st century. Academic Press, LondonGoogle Scholar
  2. Aviezer D, Brill-Almon E, Shaaltiel Y, Hashmueli S, Bartfeld D, Mizrachi S, Liberman Y, Freeman A, Zimran A, Galun E (2009) A plant-derived recombinant human glucocerebrosidase enzyme—a preclinical and phase I investigation. PLoS One 4:e4792CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartlett JG, Snape JW, Harwood WA (2009) Intron-mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnol J 7:856–866CrossRefPubMedGoogle Scholar
  4. Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Ann Rev Plant Biol 66:211–241CrossRefGoogle Scholar
  5. Bosch D, Castilho A, Loos A, Schots A, Steinkellner H (2013) N-Glycosylation of plant-produced recombinant proteins. Curr Pharm Des 19:5503–5512CrossRefPubMedGoogle Scholar
  6. Broz A, Huang N, Unruh G (2013) Plant-based protein biomanufacturing. Genet Eng Biotechnol News 33:4CrossRefGoogle Scholar
  7. Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107CrossRefPubMedGoogle Scholar
  8. Chen Q, Lai H (2014) Gene delivery into plant cells for recombinant protein production. Biomed Res Int 2014:932161Google Scholar
  9. Chen Q, Santi L, Zhang C (2014) Plant made biologics. Biomed Res Int. doi:10.1155/2014/418064 Google Scholar
  10. Chiaiese P, Palomba F, Tatino F, Lanzillo C, Pinto G, Pollio A, Filippone E (2011) Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater. Enzyme Microb Technol 49:540–546CrossRefPubMedGoogle Scholar
  11. Chung ND, Kim NS, Giap doV, Jang SH, Oh SM, Jang SH, Kim TG, Jang YS, Yang MS (2014) Production of functional human vascular endothelial growth factor (165) in transgenic rice cell suspension cultures. Enzyme Microb Technol 63:58–63Google Scholar
  12. Cummings JF, Guerrero ML, Moon JE, Waterman P, Nielsen RK, Jefferson S, Gross FL, Hancock K, Katz JM, Yusibov V (2014) Safety and immunogenicity of a plant produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1)pdm09 virus: a phase 1 dose-escalation study in healthy adults. Vaccine 32:2251–2259CrossRefPubMedGoogle Scholar
  13. Decker EL, Parsons J, Reski R (2014) Glyco-engineering for biopharmaceutical production in moss bioreactors. Front Plant Sci 5:346CrossRefPubMedPubMedCentralGoogle Scholar
  14. Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants. Strategies for optimal expression. Biotechnol Adv 28:427–435CrossRefPubMedGoogle Scholar
  15. Dirisala VR, Jeevan A, Bix G, Yoshimura T, McMurray DN (2012) Molecular cloning and expression of the IL-10 gene from guinea pigs. Gene 498:120–127CrossRefPubMedGoogle Scholar
  16. Dirisala VR, Jeevan A, Ramasamy SK, McMurray DN (2013) Molecular cloning, expression and in silico structural analysis of guinea pig IL-17. Mol Biotechnol 55:277–287CrossRefPubMedGoogle Scholar
  17. Dirisala VR, Jeevan A, Ly LH, McMurray DN (2015) Molecular and biochemical characterization of recombinant guinea pig tumor necrosis factor-alpha (TNF-α). Mediat Inflamm (article ID 619480) Google Scholar
  18. Dolleweerd CJV, Teh AYH, Banyard AC et al (2014) Engineering, expression in transgenic plants and characterization of E559, a rabies virus-neutralizing monoclonal antibody. J Infect Dis 210:200–208CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dugdale B, Mortimer CL, Kato M, James TA, Harding RM, Dale JL (2013) In plant activation: an inducible, hyperexpression platform for recombinant protein production in plants. Plant Cell 25:2429–2443CrossRefPubMedPubMedCentralGoogle Scholar
  20. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185CrossRefPubMedGoogle Scholar
  21. Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101CrossRefPubMedGoogle Scholar
  22. Feller T, Pascal T, Koch N, Spiegel H, Addai-Mensah Fischer R et al (2013) Plant based production of recombinant plasmodium surface protein Pf38 and evaluation of its potential as a vaccine candidate. PLoS One 8:e79920CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200CrossRefPubMedGoogle Scholar
  24. Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J (2012) GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv 30:434–439CrossRefPubMedGoogle Scholar
  25. Fischer R, Schillberg S, Buyel JF, Twyman RM (2013) Commercial aspects of pharmaceutical protein production in plants. Curr Pharm Des 19:5471–5477CrossRefPubMedGoogle Scholar
  26. Fox JL (2003) Puzzling industry response to ProdiGene fiasco. Nat Biotechnol 21:3–4CrossRefPubMedGoogle Scholar
  27. Fujiwara Y, Aiki Y, Yang L, Takaiwa F, Kosaka A, Tsuji NM, Shiraki K, Sekikawa K (2010) Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Expr Purif 72:125–130CrossRefPubMedGoogle Scholar
  28. Gecchele E, Merlin M, Brozzetti A, Falorni A, Pezzotti M, Avesani L (2015) A comparative analysis of recombinant protein expression in different biofactories: bacteria, insect cells and plant systems. J Vis Exp 97:e52459–e52459Google Scholar
  29. Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546CrossRefPubMedGoogle Scholar
  30. Gleba A, Giritch YY (2011) Plant viral vectors for protein expression. Horizon Scientific Press, LondonGoogle Scholar
  31. Gleba YY, Tuse D, Giritch A (2014) Plant viral vectors for delivery by Agrobacterium. Plant viral vectors book. Springer, Berlin, pp 155–192Google Scholar
  32. Hassouneh W, MacEwan SR, Chilkoti A (2012) Fusions of elastin-like polypeptides to pharmaceutical proteins. Methods Enzymol 502:215–237CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hefferon K (2013) Plant-derived pharmaceuticals for the developing world. Biotechnol J 8:1193–1202PubMedGoogle Scholar
  34. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78CrossRefPubMedGoogle Scholar
  35. Howard JA, Hood EE (2014) Commercial plant-produced recombinant protein products: case studies. Springer, New YorkGoogle Scholar
  36. Hull AK, Criscuolo CJ, Mett V, Groen H, Steeman W, Westra H, Chapman G, Legutki B, Baillie L, Yusibov V (2005) Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine 23:2082–2086CrossRefPubMedGoogle Scholar
  37. Jain A, Saini V, Kohli DV (2013) Edible transgenic plant vaccines for different diseases. Curr Pharm Biotechnol 14:594–614CrossRefPubMedGoogle Scholar
  38. Jansen PLM, Bruijne JD (2012) Controlled-release interferon alpha 2b, a new member of the interferon family for the treatment of chronic hepatitis C. Expert Opin Investig Drugs 21:111–118CrossRefPubMedGoogle Scholar
  39. Jez J, Castilho A, Grass J, Vorauer-Uhl K, Sterovsky T, Altmann F, Steinkellner H (2013) Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J 8:371–382CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kaldis A, Ahmad A, Reid A, McGarvey B, Brandle J, Ma S, Jevnikar A, Kohalmi SE, Menassa R (2013) High-level production of human interleukin-10 fusions in tobacco cell suspension cultures. Plant Biotechnol J 11:535–545CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kim H, Jeon J, Lee KJ, Ko K (2014) N-Glycosylation modification of plant-derived virus-like particles: an application in vaccine. Biomed Res Int (article ID 249519) Google Scholar
  42. Kittur FS, Hung CY, Darlington DE, Sane DC, Xie J (2012) N-Glycosylation engineering of tobacco plants to produce asialoerythropoietin. Plant Cell Rep 31:1233–1243CrossRefPubMedGoogle Scholar
  43. Klimyuk V, Pogue G, Herz S, Butler J, Haydon H (2014) Production of recombinant antigens and antibodies in Nicotiana benthamiana using magnifection technology: GMP-compliant facilities for small- and large-scale manufacturing. Curr Top Microbiol Immunol 375:127–154PubMedGoogle Scholar
  44. Komarnytsky S, Borisjuk NV, Borisjuk LG, Alam MZ, Raskin I (2000) Production of recombinant proteins in tobacco guttation fluid. Plant Physiol 124:927–934CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kwon KC, Verma D, Singh ND, Herzog R, Daniell H (2013) Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 65:782–799CrossRefPubMedGoogle Scholar
  46. Lahrtz F (2015) How to successfully patent therapeutic antibodies. J Biomol Screen 20:484–491CrossRefPubMedGoogle Scholar
  47. Lai H, Engle M, Fuchs A et al (2010) Monoclonal antibodies produced in plants efficiently treats west Nile virus infection in mice. Proc Natl Acad Sci USA 9:2419–2424CrossRefGoogle Scholar
  48. Lee JH, Park DY, Lee KJ et al (2013) Intracellular Reprogramming of expression, glycosylation, and function of a plant-derived antiviral therapeutic monoclonal antibody. PLoS One 8:e68772CrossRefPubMedPubMedCentralGoogle Scholar
  49. Leuzinger K, Dent M, Hurtado J et al (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77:e5052Google Scholar
  50. Li WL, Li K, Li J, Lin X, Sun X, Tang K (2011) Expression of biologically active human insulin-like growth factor 1 in Arabidopsis thaliana seeds via oleosin fusion technology. Biotechnol Appl Biochem 58:139–146CrossRefPubMedGoogle Scholar
  51. Luchakivskaya Y, Kishchenko O, Gerasymenko I, Olevinskaya Z, Simonenko Y, Spivak M, Kuchuk M (2011) High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Rep 30:407–415CrossRefPubMedGoogle Scholar
  52. Makhzoum A, Benyammi R, Moustafa K, Trémouillaux-Guiller J (2013) Recent advances in host plants and expression cassettes structure and function in plant molecular pharming. Biodrugs 28:145–159CrossRefGoogle Scholar
  53. Makvandi-Nejad S, McLean MD, Hirama T, Almquist KC, MacKenzie CR, Hall JC (2005) Transgenic tobacco plants expressing a dimeric single-chain variable fragment (scFv) antibody against Salmonella enterica serotype Paratyphi B. Transgenic Res 14:785–792CrossRefPubMedGoogle Scholar
  54. Maxmen A (2012) Drug-making plant blooms. Nature 485:160CrossRefPubMedGoogle Scholar
  55. Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed Res Int (article ID 136419) Google Scholar
  56. Mortimer E, Maclean JM, Mbewana S, Buys A, Williamson AL, Hitzeroth II, Rybicki EP (2012) Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnol 12:14CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nausch H, Mikschofsky H, Koslowski R, Meyer U, Broer I, Huckauf J (2012) High level transient expression of ER-targeted human interleukin-6 in Nicotiana benthamiana. PLoS One 7:e48938CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nykiforuk CL, Shen Y, Murray EW, Boothe JG, Busseuil D, Rheaume E, Tardif JC, Reid A, Moloney MM (2011) Expression and recovery of biologically active recombinant apolipoprotein AI (Milano) from transgenic safflower (Carthamus tinctorius) seeds. Plant Biotechnol J 9:250–263CrossRefPubMedGoogle Scholar
  59. Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222CrossRefPubMedGoogle Scholar
  60. Park S, Yi N, Kim YS, Jeong M, Bang S, Choi YD, Kim J (2010) Analysis of five novel putative constitutive gene promoters in transgenic rice plants. J Exp Bot 61:2459–2467CrossRefPubMedPubMedCentralGoogle Scholar
  61. Paul M (2015) International society for plant molecular farming. Transgenic Res 24:375–380CrossRefPubMedGoogle Scholar
  62. Paul M, Ma JKC (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67CrossRefPubMedGoogle Scholar
  63. Penney CA, Thomas DR, Deen SS, Amanda M, Walmsley M (2011) Plant-made vaccines in support of the millennium development goals. Plant Cell Rep 30:789–798CrossRefPubMedPubMedCentralGoogle Scholar
  64. Peyret H, Lomonosoff GP (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83:51–58CrossRefPubMedGoogle Scholar
  65. Piron R, Koker SD, De Paepe A, Goossens J, Grooten J, Nauwynck H, Depicker A (2014) Boosting in Planta production of antigens derived from the porcine reproductive and respiratory syndrome virus (PRRSV) and subsequent evaluation of their immunogenicity. PLoS One 9:e91386CrossRefPubMedPubMedCentralGoogle Scholar
  66. Platis D, Labrou NE (2009) Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract. Biotechnol J 4:1320–1327CrossRefPubMedGoogle Scholar
  67. Rigano MM, Scotti N, Cardi T (2012) Unsolved problems in plastid transformation. Bioengineered 3:329–333CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sabalza M, Christou P, Capell T (2014) Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 36:2367–2379CrossRefPubMedGoogle Scholar
  69. Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant made proteins. Curr Opin Biotechnol 32:163–170CrossRefPubMedGoogle Scholar
  70. Scotti N, Cardi T (2014) Transgene-induced pleiotropic effects in transplastomic plants. Biotechnol Lett 36:229–239CrossRefPubMedGoogle Scholar
  71. Shanmugaraj BM, Ramalingam S (2014) Plant expression platform for the production of recombinant pharmaceutical proteins. Austin J Biotechnol Bioeng 1:4Google Scholar
  72. Shchelkunov SN, Salyaev RK, Pozdnyakov SG, Rekoslavskaya NI, Nesterov AE, Ryzhova TS, Sumtsova VM, Pakova NV, Mishutina UO, Kopytina TV, Hammond RW (2006) Immunogenicity of a novel, bivalent, plant-based oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol Lett 28:959–967CrossRefPubMedGoogle Scholar
  73. Shoseyov O, Posen Y, Grynspan F (2014) Human collagen produced in plants: more than just another molecule. Bioengineered 5:49–52CrossRefPubMedGoogle Scholar
  74. Sindarovska YR, Gerasymenko IM, Sheludko YV, Olevinskaya ZM, Spivak NY, Kuchuk NV (2010) Production of human interferon alpha 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression. Cytol Genet 44:313–316CrossRefGoogle Scholar
  75. Sparrow P, Broer I, Hood EE, Eversole K, Hartung F, Schiemann J (2013) Risk Assessment and regulation of molecular farming—a comparison between Europe and US. Curr Pharm Des 2013:19Google Scholar
  76. Stoger E, Fischer R, Moloney M, Ma JKC (2014) Plant molecular pharming for the treatment of chronic and infectious diseases. Ann Rev Plant Biol 65:743–768CrossRefGoogle Scholar
  77. Sully EK, Whaley KJ, Bohorova N, Bohorov O, Goodman C, Kim Do H, Pauly MH, Velasco J, Hiatt E, Morton J, Swope K, Roy CJ, Zeitlin L, Mantis NJ (2014) A chimeric plantibody passively protects mice against aerosolized ricin challenge. Clin Vaccine Immunol 21:777–782CrossRefPubMedPubMedCentralGoogle Scholar
  78. Thomas DR, Walmsley AM (2014) Improved expression of recombinant plant-made hEGF. Plant Cell Rep 33:1801–1814CrossRefPubMedGoogle Scholar
  79. Thomas DR, Penney CA, Majumder A, Walmsley AM (2011) Evolution of plant-made pharmaceuticals. Int J Mol Sci 12:3220–3236CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tusé D, Tu T, McDonald KA (2014) Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. Biomed Res Int (article ID 256135) Google Scholar
  81. Vardakoua M, Sainsburyb F, Rigby N, Mulhollanda F, Lomonossoff GP (2012) Expression of active recombinant human gastric lipase in Nicotiana benthamiana using the CPMV-HT transient expression system. Protein Expr Purif 81:69–74CrossRefGoogle Scholar
  82. Veale MA, Slabbert MM, Van Emmenes L (2012) Agrobacterium-mediated transformation of potato cv. Mnandi for resistance to the potato tuber moth (Phthorimaea operculella). S Afr J Bot 80:67–74CrossRefGoogle Scholar
  83. Webster DE, Thomas MC (2012) Post-translational modification of plant made foreign proteins; glycosylation and beyond. Biotechnol Adv 30:410–418CrossRefPubMedGoogle Scholar
  84. Werner S, Breus O, Symonenko Y, Marillonnet S, Gleba Y (2011) High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc Natl Acad Sci USA 108:14061–14066CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30:419–433CrossRefPubMedGoogle Scholar
  86. Xu C, Li L, Jin W, Wan Y (2014) Recombinase polymerase amplification (RPA) of CaMV 35S promoter and nos terminator for rapid detection of genetically modified crops. Int J Mol Sci 15:18197–18205CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yemets AI, Tanasienko IV, Krasylenko YA, Blume YB (2014) Plant-based biopharming of recombinant human lactoferrin. Cell Biol Int 38:989–1002PubMedGoogle Scholar
  88. Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccines 7:313–321CrossRefGoogle Scholar
  89. Zhang D, Nandi S, Bryan P, Pettit S, Nguyen D, Santos MA, Huang N (2010) Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expr Purif 74:69–79CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F et al (2011) Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 118:5767–5773CrossRefPubMedGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2016

Authors and Affiliations

  • Vijaya R. Dirisala
    • 1
  • Rahul R. Nair
    • 4
  • Krupanidhi Srirama
    • 1
  • Prakash Narayana Reddy
    • 1
  • K. R. S. Sambasiva Rao
    • 2
  • N. Satya Sampath Kumar
    • 1
  • Giridhar Parvatam
    • 3
  1. 1.Department of BiotechnologyVignan’s Foundation for Science, Technology and Research University (VFSTRU)GunturIndia
  2. 2.Department of BiotechnologyAcharya Nagarjuna UniversityGunturIndia
  3. 3.Plant Cell Biotechnology DepartmentCentral Food Technological Research Institute (CFTRI)MysoreIndia
  4. 4.Administrative officeAushmath BiosciencesCoimbatoreIndia

Personalised recommendations