Skip to main content
Log in

Identification of nucleases related to nutrient mobilization in senescing cotyledons from French bean

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The knowledge about the physiological function of plant nucleases is scarce besides that they have been involved in nucleic acid degradation related with programmed cell death processes. Cotyledons provide a suitable system to investigate this process and the changes associated to nutrient mobilization. Nuclease activities have been determined in French bean seedlings. The total nuclease activity in French bean cotyledons is lower than in embryonic axes; however, several nucleases were detected by in-gel nuclease activity assays with extracts from cotyledons of French bean and ssDNA as substrate. The nuclease activities induced during cotyledon senescence showed higher activity at neutral than at acidic pH. Five different nuclease genes belonging to S1/P1 family have been identified in French bean genome database named PVN1 to PVN5. Their relative expression in cotyledons has been determined from the start of imbibition to senescence, and three genes from this family showed expression in cotyledons. PVN1 was expressed during early stages of seedlings development, whereas PVN4 and PVN5 were expressed during cotyledons senescence. The removal of epicotyl in French bean seedlings resulted in a decrease in the activity and in the expression of the genes associated with the cotyledons senescence process, i.e. PVN4 and PVN5. At the same time, the mobilization of reserves in those cotyledons was slowed down. In the same way, the deficit in phosphate and nitrate during seedlings development led to an acceleration of induction of these genes at the same time that reserves were utilized early on the time. Therefore, the induction of PVN4 and PVN5, the two S1 nuclease genes involved in the process of cotyledon senescence, is related to nutrient mobilization, supporting a possible role for nucleic acids in nutrient recycling during cotyledon senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aleksandrushkina NI, Seredina AV, Vanyushin BF (2009) Endonuclease activities in the coleoptile and first leaf of developing etiolated wheat seedlings. Russ J Plant Physiol 56:154–163

    Article  CAS  Google Scholar 

  • Ananieva K, Ananiev ED, Mishev K, Georgieva K, Tzvetkova N, Van Staden J (2008) Changes in photosynthetic capacity and polypeptide patterns during natural senescence and rejuvenation of Cucurbita pepo L (zucchini) cotyledons. Plant Growth Regul 54:23–29

    Article  CAS  Google Scholar 

  • Barrow M (2006) Endopolyploidy in seed plants. BioEssays 28:271–281

    Article  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown AV, Hudson KA (2015) Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. BMC Plant Biol 15:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabello-Diaz JM, Galvez-Valdivieso G, Caballo C, Lambert R, Quiles FA, Pineda M, Piedras P (2015) Identification and characterization of a gene encoding for a nucleotidase from Phaseolus vulgaris. J Plant Physiol 185:44–51

    Article  CAS  PubMed  Google Scholar 

  • Cabello-Díaz JM, Quiles FA, Lambert R, Pineda M, Piedras P (2012) Identification of a novel phosphatase with high affinity for nucleotides monophosphate from common bean (Phaseolus vulgaris). Plant Physiol Biochem 53:54–60

    Article  CAS  PubMed  Google Scholar 

  • Carbonaro M (2006) 7S globulins from Phaseolus vulgaris L.: impact of structural aspects on the nutritional quality. Biosci Biotechnol Biochem 70:2620–2626

    Article  CAS  PubMed  Google Scholar 

  • Dante RA, Larkins BA, Sabelli PA (2014) Cell cycle control and seed development. Front Plant Sci 5:483

    Article  Google Scholar 

  • De la Torre-Hernandez ME, Rivas-San Vicente M, Greaves-Fernandez N, Cruz-Ortega R, Plasencia J (2010) Fumonisin B1 induces nuclease activation and salicylic acid accumulation through long chain sphingoid base build up in germinating maize. Physiol Mol Plant Pathol 74:337–345

    Article  CAS  Google Scholar 

  • Delorme VGR, McCabe PF, Kim DJ, Leaver CJ (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol 123:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez F, Cejudo FJ (2012) A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Sci 197:114–121

    Article  CAS  PubMed  Google Scholar 

  • Domínguez F, Moreno J, Cejudo FJ (2012) The scutellum of germinated wheat grains undergoes programmed cell death: identification of an acidic nuclease involved in nucleus dismantling. J Exp Bot 63:5475–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Li M, Kong D, Wang L, Lv Q, Wang J, Bao F, Gong Q, Xia J, He Y (2014) Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J Exp Bot 65:4051–4063

    Article  PubMed  Google Scholar 

  • Egorova VP, Zhao Q, Lo YS, Jane WN, Cheng N, Hou SY, Dai H (2010) Programmed cell death of the mung bean cotyledon during seed germination. Bot Stud 51:439–449

    CAS  Google Scholar 

  • Emani C, Hall TC (2008) Phaseolin: structure and evolution. Open Evol J 2:66–74

    Article  CAS  Google Scholar 

  • Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A (2008) Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J Exp Bot 59:3247–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farage-Barhom S, Burd S, Sonego L, Mett A, Belausov E, Gidoni D, Lers A (2011) Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei. Mol Plant 4:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL (2011) Senescence and nutrient remobilization in crop plants. In: Hawkesford MJ, Barraclough PB (eds) The molecular and physiological basis of nutrient use efficiency in crops. Blackwell, New York, pp 83–102

    Chapter  Google Scholar 

  • Haferkamp I, Fernie AR, Neuhaus HE (2011) Adenine nucleotide transport in plants: much more than a mitochondrial issue. Trends Plant Sci 16:507–515

    Article  CAS  PubMed  Google Scholar 

  • Harper JE, Gibson AH (1984) Differential nodulation tolerance to nitrate among legume species. Crop Sci 24:797–801

    Article  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • Iwamatsu A, Aoyama H, Dibo G, Tsunasawa S, Sakiyama F (1991) Amino acid sequence of nuclease S1 from Aspergillus oryzae. J Biochem 100:151–158

    Google Scholar 

  • Jasid S, Galatro A, Villordo JJ, Puntarulo S, Simontacchi M (2009) Role of nitric oxide in soybean cotyledon senescence. Plant Sci 176:662–668

    Article  CAS  Google Scholar 

  • Ko CY, Lai YL, Liu WY, Lin CH, Chen YT, Chen LF, Lin TY, Shaw JF (2012) Arabidopsis ENDO2: its catalytic role and requirement of N-glycosylation for function. J Agric Food Chem 60:5169–5179

    Article  CAS  PubMed  Google Scholar 

  • Lambert R, Quiles FA, Cabello-Diaz JM, Piedras P (2014) Purification and identification of an nuclease activity in embryo axes from French bean. Plant Sci 224:137–143

    Article  CAS  PubMed  Google Scholar 

  • Lesniewicz K, Pienkowska J, Poreba E (2010) Characterization of nucleases involved in seedling development of cauliflower. J Plant Physiol 167:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Lesniewicz K, Poreba E, Smolarkiewicz M, Wolff N, Stanislawski S, Wojtaszek P (2012) Plant plasma membrane-bound staphylococcal-like DNases as a novel class of eukaryotic nucleases. BMC Plant Biol 12:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesniewicz K, Karlowski WM, Pienkowska JR, Krzywkowski P, Poreba E (2013) The plant S1-like nuclease family has evolved a highly diverse range of catalytic capabilities. Plant Cell Physiol 54:1064–1078

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Pedrouso M, Alonso J, Zapata C (2014) Evidence for phosphorylation of the major seed storage protein of the common bean and its phosphorylation-dependent degradation during germination. Plant Mol Biol 84:415–428

    Article  CAS  PubMed  Google Scholar 

  • Maekawa K, Tsunasawa S, Dibo G, Sakiyama F (1991) Primary structure of nuclease P1 from Penicillium citrinum. Eur J Biochem 200:651–661

    Article  CAS  PubMed  Google Scholar 

  • Mohlmann T, Bernard C, Hach S, Neuhaus HE (2010) Nucleoside transport and associated metabolism. Plant Biol 12:26–34

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Perez-Amador MA, Abler ML, De Rocher EJ, Thompson DM, van Hoof A, LeBrasseur ND, Lers A, Green PJ (2000) Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol 122:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiles FA, Raso MJ, Pineda M, Piedras P (2009) Ureide metabolism during seedling development in French bean (Phaseolus vulgaris). Physiol Plantarum 135:19–28

    Article  CAS  Google Scholar 

  • Rewers M, Sliwinska E (2014) Endoreduplication in the germinating embryo and young seedling is related to the type of seedling establishment but is not coupled with superoxide radical accumulation. J Exp Bot 65:4385–4396

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W, Takami T (2014) Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J Exp Bot 65:3835–3843

    Article  PubMed  Google Scholar 

  • Sanchez-Pons N, Vicient CM (2013) Identification of a type I Ca2+/Mg2+-dependent endonuclease induced in maize cells exposed to camptothecin. BMC Plant Biol 13:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers JHM (2015) Transcriptional networks in leaf senescence. Curr Opin Plant Biol 27:77–83

    Article  CAS  PubMed  Google Scholar 

  • Schippers JHM, Schmidt R, Wagstaff C, Jing H-C (2015) Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol 169:914–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamimuzzaman M, Vodkin L (2014) Transcription factors and glyoxylate cycle genes prominent in the transition of soybean cotyledons to the first functional leaves of the seedling. Funct Integr Genom 14:683–696

    Article  CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama M, Ito J, Aoyagi S, Fukuda H (2000) Endonucleases. Plant Mol Biol 44:387–397

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Venkatachalam P, Liao H, Yan X, Raghothama K (2007) Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.). Planta 227:151–165

    Article  CAS  PubMed  Google Scholar 

  • Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Yehudai-Resheff S, Zimmer SL, Komine Y, Stern DB (2007) Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell 19:1023–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemm EW, Cocking EC (1955) The determination of amino-acids with ninhydrin. Analyst 80:209–213

    Article  CAS  Google Scholar 

  • Yupsanis T, Symeonidis L, Kalemi T, Moustaka H, Yupsani A (2004) Purification, properties and specificity of an endonuclease from Agropyron elongatum seedlings. Plant Physiol Biochem 42:795–802

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Marta Robles for her technical assistance and Gregorio Gálvez-Valdivieso for critical reading the manuscript. This work has been funded by Ministerio de Ciencia e Innovación (AGL2012-34230), Ministerio de Economía y Competitividad (AGL2015-69554) and Plan Andaluz de Investigación (BIO-115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Piedras.

Additional information

Communicated by O. Ferrarese-Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, R., Cabello-Díaz, J.M., Quiles, F.A. et al. Identification of nucleases related to nutrient mobilization in senescing cotyledons from French bean. Acta Physiol Plant 38, 266 (2016). https://doi.org/10.1007/s11738-016-2287-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2287-3

Keywords

Navigation