Skip to main content
Log in

Exogenous sucrose treatment accelerates postharvest tomato fruit ripening through the influence on its metabolism and enhancing ethylene biosynthesis and signaling

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The role of sucrose as a signal molecule in plants was in debate for a long time, until recently, it gradually becomes more prominently accepted. Sucrose plays roles in a vast array of developmental processes in plants, however, its function in fruit ripening has not been well elucidated. In this study, the influence of exogenous sucrose treatment (500 mM) on postharvest tomato fruit ripening was investigated. It was found that, in comparison with mannitol treatment (500 mM, set as control), sucrose accelerated the ripening process with higher levels of respiration rate and ethylene production during the storage. Sucrose treatment up-regulated its biosynthetic genes, whilst stimulated expressions of genes encoding degradation related enzymes in the fruits. However, higher sucrose content was observed in sucrose-treated fruits only in the first few days. In addition, sucrose application had minor effect on the contents of its degrading products, glucose and fructose. Moreover, exogenous sucrose treatment up-regulated expressions of ethylene biosynthetic genes, and promoted ethylene signal transduction via influencing critical genes of the signaling pathway in different patterns. These results indicate that sucrose stimulates tomato fruit ripening may through mediating its own metabolism, which facilitates nutrients fluxes and metabolic signaling molecules activation, and also by enhancing ethylene biosynthesis and signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CIN:

Cytoplasmic invertases

CWIN:

Cell wall invertase

INVINH1:

Invertase inhibitor 1

Man:

Mannitol

SPP:

Sucrose-phosphate phosphatase

SPS:

Sucrose-phosphate synthase

Suc:

Sucrose

SUS:

Sucrose synthase

VIN:

Vacuolar invertase

References

  • Albacete A, Cantero-Navarro E, Grosskinsky DK et al (2015) Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. J Exp Bot 66:863–878

    Article  CAS  PubMed  Google Scholar 

  • Bisson MMA, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3:882–889

    Article  CAS  PubMed  Google Scholar 

  • Bolouri Moghaddam MR, Van den Ende W (2013) Sweet immunity in the plant circadian regulatory network. J Exp Bot 64:1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS, McLaughlin JE (2007) Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot 58:267–277

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, Endo A, Zhou L et al (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury SR, Roy S, Sengupta DN (2009) A comparative study of cultivar differences in sucrose phosphate synthase gene expression and sucrose formation during banana fruit ripening. Postharvest Biol Technol 54:15–24

    Article  CAS  Google Scholar 

  • Ciereszko I, Johansson H, Kleczkowski LA (2001) Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J 354:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai ZW, Meddar M, Renaud C, Merlin I, Hilbert G, Delrot S, Gomes E (2014) Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. J Exp Bot 65:4665–4677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Aoust MA, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11:2407–2418

    Article  PubMed  PubMed Central  Google Scholar 

  • Das PK, Shin DH, Choi SB, Yoo SD, Choi G, Park YI (2012) Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 34:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377

    Article  CAS  PubMed  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in arabidopsis. Plant Cell 12:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264

    Article  CAS  PubMed  Google Scholar 

  • Granot D, David-Schwartz R, Kelly G (2013) Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci 4:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kuhn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J 45:180–192

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Ibarra-Laclette E, Adame-Álvarez RM, Martínez O, Ramirez-Chávez E, Molina-Torres J, Herrera-Estrella L (2012) How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS One 7:e30537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun TK, Eom SH, Rim Y, Kim JS (2011) Alteration of the expression and activation of tomato invertases during Botrytis cinerea infection. Plant OMICS 4:413–417

    CAS  Google Scholar 

  • Jia HF, Wang YH, Sun MZ et al (2013) Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol 198:453–465

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Ni DA, Ruan YL (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klann EM, Hall B, Bennett AB (1996) Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 112:1321–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastdrager J, Hanson J, Smeekens S (2014) Sugar signals and the control of plant growth and development. J Exp Bot 65:799–807

    Article  CAS  PubMed  Google Scholar 

  • Leclercq J, Adams-Phillips LC, Zegzouti H et al (2002) LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol 130:1132–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZM, Palmer WM, Martin AP, Wang RQ, Rainsford F, Jin Y, Patrick JW, Yang YJ, Ruan YL (2012) High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot 63:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Van den Ende W, Rolland F (2014) Sucrose induction of anthocyanin biosynthesis is mediated by DELLA. Mol Plant 7:570–572

    Article  CAS  PubMed  Google Scholar 

  • Liu YH, Offler CE, Ruan YL (2013) Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Front Plant Sci 4:282

    PubMed  PubMed Central  Google Scholar 

  • Ljung K, Nemhauser JL, Perata P (2015) New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol 25:130–137

    Article  CAS  PubMed  Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2012) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    Article  Google Scholar 

  • Mou WS, Li DD, Luo ZS, Mao LC, Ying TJ (2015) Transcriptomic analysis reveals possible influences of ABA on secondary metabolism of pigments, flavonoids and antioxidants in tomato fruit during ripening. PLoS One 10:e0129598

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Hara LE, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insight into the role of Trehalose-6-phosphate. Mol Plant 6:261–274

    Article  PubMed  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL (2012) Signaling role of sucrose metabolism in development. Mol Plant 5:763–765

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Ma JK, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    Article  CAS  PubMed  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang YP, Chen P et al (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58

    Article  CAS  PubMed  Google Scholar 

  • Tognetti JA, Pontis HG, Martínez-Noël GMA (2013) Sucrose signaling in plants: a world yet to be explored. Plant Signal Behav 8:e23316

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai AYL, Gazzarrini S (2014) Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci 5:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SJ, Yeh KW, Tsai CY (2001) Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Sci 161:635–644

    Article  CAS  Google Scholar 

  • Wen X, Zhang CL, Ji YS et al (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    Article  CAS  PubMed  Google Scholar 

  • Yokotani N, Tamura S, Nakano R, Inaba A, Kubo Y (2003) Characterization of a novel tomato EIN3-like gene (LeEIL4). J Exp Bot 54:2775–2776

    Article  CAS  PubMed  Google Scholar 

  • Zanor MI, Osorio S, Nunes-Nesi A et al (2009) RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150:1204–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Wang XJ, Wu JX, Chen SY, Chen H, Chai LJ, Yi HL (2014) Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. PLoS One 9:e116056

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the National Natural Science Foundation of China (31571895; 31371856), Zhejiang Provincial Natural Science Foundation of China (LR13C200001) and Hangzhou Science and Technology Development Program (20160432B46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zisheng Luo.

Additional information

Communicated by PK Nagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Mou, W., Wang, Y. et al. Exogenous sucrose treatment accelerates postharvest tomato fruit ripening through the influence on its metabolism and enhancing ethylene biosynthesis and signaling. Acta Physiol Plant 38, 225 (2016). https://doi.org/10.1007/s11738-016-2240-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2240-5

Keywords

Navigation