Skip to main content
Log in

Comparative analysis of microRNAs and putative target genes in hybrid clone Paulownia ‘yuza 1’ under drought stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought stress in plants often leads to reduced productivity and limited geographic distribution, which can affect human life and ecosystems. The responses of diploid and tetraploid Paulownia tomentosa × Paulownia fortunei to drought have been reported, but the effects of drought stress on the levels of microRNA (miRNA) expression have not been published so far. Here, we constructed four small RNA (sRNA) libraries and four corresponding degradome libraries of well-watered and severe drought-treated diploid and tetraploid plants to identify the miRNAs and their putative target genes in Paulownia ‘yuza 1’, a P. tomentosa × P. fortunei hybrid clone, by sRNA and degradome sequencing. The putative target genes of miRNAs were annotated with gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Three conserved and 21 novel miRNAs responsive to drought stress were found, in which 15 were identified as the main drought responsive miRNAs that conferred higher resistance in tetraploid than in diploid of Paulownia ‘yuza 1’. Our results will lay the foundation for investigating the roles of miRNAs in Paulownia and other trees in response to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams KL (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered 98:136–141

    Article  CAS  PubMed  Google Scholar 

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballif J, Endo S, Kotani M, MacAdam J, Wu Y (2011) Over-expression of HAP3b enhances primary root elongation in Arabidopsis. Plant Physiol Biochem 49:579–583

    Article  CAS  PubMed  Google Scholar 

  • Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate-a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  • Brosnan CA, Voinnet O (2009) The long and the short of noncoding RNAs. Curr Opin Cell Biol 21:416–425

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Bogeat-Triboulot M-B, Tisserant E, Balzergue S, Martin-Magniette M-L, Lelandais G, Ningre N, Renou J-P, Tamby J-P, Le Thiec D (2010) Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genom 11:630

    Article  Google Scholar 

  • Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    Article  CAS  PubMed  Google Scholar 

  • Dejardin A, Sokolov L, Kleczkowski L (1999) Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J 344:503–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng MJ, Zhang XS, Fan GQ, Zhao ZL, Dong YP, Wei Z (2013) Physiological responses to salt stress of tetraploid Paulownia australis and Paulownia fortunei plants. J Henan Agric Univ 47:698–702

    Google Scholar 

  • Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Dong YP, Fan GQ, Deng MJ, Xu EK, Zhao ZL (2014a) Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought. Genomics 104:295–305

    Article  CAS  PubMed  Google Scholar 

  • Dong YP, Fan GQ, Zhao ZL, Deng MJ (2014b) Transcriptome expression profiling in response to drought stress in Paulownia australis. Int J Mol Sci 15:4583–4607

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan GQ, Zhai XQ, Wei ZZ, Yang ZQ (2010) Induction of autotetraploid from somatic cell of Paulownia tomentosa × Paulownia fortunei and its in vitro plantlet regeneration. J Northeast For Univ 38:22–26

    CAS  Google Scholar 

  • Fan GQ, Li XY, Deng MJ, Zhao ZL, Yang L (2016) Comparative analysis and identification of mirnas and their target genes responsive to salt stress in diploid and tetraploid Paulownia fortunei seedlings. PLoS One 11:e0149617

    Article  PubMed  PubMed Central  Google Scholar 

  • German MA, Pillay M, Jeong D-H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R (2008) Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QZ, Chen ZH, Mauceli E, Gnirke A, Rhind N, Palma FD, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regve A (2011) Full-length trancriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13

    Article  CAS  PubMed  Google Scholar 

  • Hao DC, Yang L, Xiao PG, Liu M (2012) Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol Plant 146:388–403

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jia X, Wang W, Ren L, Chen Q, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71:51–59

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu JH (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA Gene Regul Mech 1819:137–148

    CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell Online 21:622–641

    Article  CAS  Google Scholar 

  • Leitch A, Leitch I (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008a) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK (2008b) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Howell SH (2010) BZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell 22:782–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Stone SL (2010) Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22:2630–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Tian X, Li Y, Wu C, Zheng C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long RC (2013) Characteration and analysis of salt-stress related proteins and miRNA in Medicago sativa and Medicago truncatula. Chongqing University, Chongqing

    Google Scholar 

  • Lu S, Sun Y, Shi R, Clark C, Li L, Chiang V (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Mao WH, Li ZY, Xia XJ, Li YD, Yu JQ (2012) A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS One 7:e33040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu A-L, Zhao Y, McDonald H, Zeng T, Hirst M (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu J, Tan H, Hong S, Liang Y, Zuo J (2013) Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant 6:188–201

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl A Sci USA 104:16450–16455

    Article  CAS  Google Scholar 

  • Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129

    Article  CAS  PubMed  Google Scholar 

  • Niu SY, Fan GQ, Xu EK, Deng MJ, Zhao ZL, Dong YP (2014) Transcriptome/degradome-wide discovery of microRNAs and transcript targets in two Paulownia australis genotypes. PLoS One 9:e106736

    Article  PubMed  PubMed Central  Google Scholar 

  • Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960–976

    CAS  PubMed  Google Scholar 

  • Proudfoot NJ (2011) Ending the message: poly (A) signals then and now. Genes Dev 25:1770–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Duan Z, Xia X, Yin W (2011) Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep 30:1893–1907

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Gene Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Dinkins RD, Hunt AG (2009) Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits. BMC Cell Biol 10:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomic 12:327–339

    Article  CAS  Google Scholar 

  • Romualdi C, Bortoluzzi S, D'Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of diferentially expressed genes in multiple tag sampling experiments. Physiol Gen 12:159–162

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13:1427–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14:148–155

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kaloudas D, Raines CA (2008) Expression analysis of the Arabidopsis CP12 gene family suggests novel roles for these proteins in roots and floral tissues. J Exp Bot 59:3975–3985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu J (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzi LC, Simpson GG (2008) Regulation of flowering time by RNA processing. Curr Top Microbiol Immunol 326:201–218

    CAS  PubMed  Google Scholar 

  • Tian B, Manley JL (2013) Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 38:312–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Chen L, Zhao M, Tian Q, Zhang W (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 12:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yin C, Wang G (2013) Related physiological and biochemical characteristics of diploid and tetraploid Cymbidium hybrids under high temperature stress. Acta Bot Boreal Occident Sin 33:735–740

    Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Liu Y, Zhu A, Wu X, Ye J, Yu K, Guo W, Deng X (2010) Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics 11:246

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu EK, Fan GQ, Niu SY, Zhao ZL, Deng MJ, Dong YP (2014) Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under drought stress. Plos One 9:e113313

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Shi S, Xiang ZX (2013) In vitro induction, identification and physiological characteristics of autotetraploid Dendrobium officinale. Acta Bot Boreal –Occident Sin 33:2189–2193

    CAS  Google Scholar 

  • Yi H, Richards EJ (2007) A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell Online 19:2929–2939

    Article  CAS  Google Scholar 

  • Zhang SN, Zhang ZC, Zhang HL, Kong YE (2008) Growth, physiological and biochemical characteristics of non-heading Chinese Cabbage under low temperature stress. Acta Bot Boreal Occident Sin 28:109–112

    Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang XS, Zhai XQ, Deng MJ, Dong YP, Zhao ZL, Fan GQ (2013) Comparative studies on physiological responses of diploid Paulownia and its tetraploid to drought stress. J Henan Agric Sci 42:118–123

    Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Xia H, Frazier TP, Yao Y, Bi Y, Li A, Li M, Li C, Zhang B, Wang X (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 30271082, 30571496), by the Outstanding Talents Project of Henan Province (Grant No. 122101110700), and by the Transformation Project of the National Agricultural Scientific and Technological Achievement of China (Grant No. 2012GB2D000271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Fan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by E Schleiff.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Yang, L., Deng, M. et al. Comparative analysis of microRNAs and putative target genes in hybrid clone Paulownia ‘yuza 1’ under drought stress. Acta Physiol Plant 38, 203 (2016). https://doi.org/10.1007/s11738-016-2225-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2225-4

Keywords

Navigation