Skip to main content
Log in

Chilling-induced changes in the antioxidant status of basil plants

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Six cultivars of basil, ‘Genovese’, ‘Purpurascens’, ‘Cinnamon’, ‘Crispum’, ‘Citriodora’, and ‘Siam Queen’, at the age of 8 weeks, were subjected to low temperature (6 °C for 8 days) or 18 °C (control). Content of hydrogen peroxide (H2O2), malondialdehyde (MDA), total phenolics, and l-ascorbic acid were assessed in basil leaves after low temperature exposure. Activity of peroxidase (POD), and catalase (CAT) enzymes and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity were also determined. The greatest increase in H2O2 was observed for lettuce leaf basil, by 104 % in comparison to the control, while most noticeable increase in the content of MDA was noted for lemon basil (by 77 %). Chilling treatment resulted in higher POD activity in two cultivars: Thai and green basil, changes in CAT activity was negligible for almost all tested genotypes, with an exception of Thai basil, for which activity of this enzyme dropped. Chilling induced the increase of l-ascorbic acid in most tested basil cultivars, but total phenolic content increased significantly only in lettuce leaf basil. Higher ability in scavenging free radicals was shown in basil treated with 6 °C, especially the red basil cultivar. For this genotype, DPPH· radical scavenging activity was the highest among tested cultivars and was parallel to the highest content of phenolics. The results indicated overproduction of H2O2, deterioration of membrane integrity, and activation of enzymatic and/or non-enzymatic defence mechanisms in basil with an evidence of genotypic variation as the response to low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Amarowicz R, Weidner S, Wojtowicz I, Karmać M, Kosińska A, Rybarczyk A (2010) Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biotechnol 4:90–96

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Aroca R, Amodeo G, Fernández-Illescas S, Herman E, Chaumont F, Chrispeels M (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Byrem TM, Nari MG, Strasburg GM (2000) Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373:102–109

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartosz G (2009) Druga twarz tlenu. Wolne rodniki w przyrodzie [Free radicals in nature]. PWN, Warszawa

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54:1822–1828

    Article  CAS  PubMed  Google Scholar 

  • Caliskan O, Odabas MS, Cirak C (2009) The modeling of the relation among the temperature and light intensity of growth in Ocimum basilicum L. J Med Plants Res 3:965–977

    Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2. doi:10.3389/fenvs.2014.00053

    Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compound. Food Chem 97:654–660

    Article  CAS  Google Scholar 

  • Gallie DR (2013) l-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica. doi:10.1155/2013/795964

    PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Guo WL, Chen RG, Gong ZH, Yin YX, Ahmed SS, He YN (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res 11:4063–4080

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Saltveit ME (2002) Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat-shocked rice (Oryza sativa L.) seedlings radicles. J Agric Food Chem 50:513–518

    Article  CAS  PubMed  Google Scholar 

  • Karpinsky S, Wingsle G, Karpinska B, Hällgren J-E (2002) Low-temperature stress and antioxidant mechanisms to oxidative stress in plants. In: Inzé D, Van Montagu M (eds) oxidative stress in plants. Taylor & Francis, London, pp 85–128

    Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Kim SI, Tai TH (2011) Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica 178:437–447

    Article  Google Scholar 

  • Krełowska-Kułas M (1993) Badanie jakości produktów spożywczych [The study of food quality]. PWN, Warszawa

    Google Scholar 

  • Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung S, Guh JO (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109–2117

    Article  CAS  Google Scholar 

  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159(1):75–85

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013) The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J. doi:10.1155/2013/658793

    Google Scholar 

  • Lück H (1962) Peroxydase. Methoden der enzymatischen analyse. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Oh M-M, Carey EE, Rajashekar CB (2009) Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578–583

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JG, Alves PLCA, Magalhães ACN (2002) The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings. The protective action of chloroplastid pigments. Braz J Plant Physiol 14:95–104

    Google Scholar 

  • Posmyk MM, Bailly C, Szafrańska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol 162:403–412

    Article  CAS  PubMed  Google Scholar 

  • Pospíšil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817:218–231

    Article  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero R (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    Article  CAS  PubMed  Google Scholar 

  • Saleh AAH (2007) Amelioration of chilling injuries in mung bean (Vigna radiata L.) seedlings by paclobutrazol, abscisic acid and hydrogen peroxide. Am J Plant Physiol 2:318–332

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Sivaci A, Kaya A, Duman S (2014) Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress. Acta Biol Hung 65:305–318

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Wójcik-Stopczyńska B, Jakowienko B (2010) Bazylia pospolita—naturalna bariera antyoksydacyjna [Basil—a natural antioxidant barrier]. Panacea 4:20–23

    Google Scholar 

  • Zhou YH, Yu JQ, Mao WH, Huang LF, Song XS, Nogué S (2006) Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant Cell Physiol 47:192–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to His Magnificence Rector of the University of Agriculture in Krakow (Poland) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kalisz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G Bartosz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalisz, A., Pokluda, R., Jezdinský, A. et al. Chilling-induced changes in the antioxidant status of basil plants. Acta Physiol Plant 38, 196 (2016). https://doi.org/10.1007/s11738-016-2214-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2214-7

Keywords

Profiles

  1. Andrzej Kalisz