Skip to main content

Transgenic peanut overexpressing mtlD gene confers enhanced salinity stress tolerance via mannitol accumulation and differential antioxidative responses

Abstract

Globally, peanut is an important oilseed crop, which is cultivated under different agro-climatic zones. Soil salinity is one of the major constraints in peanut cultivation. Therefore, to understand the physio-biochemical mechanisms imparting salinity stress, four transgenic peanut lines (cv. GG20) already developed and confirmed by our lab, having bacterial mannitol dehydrogenase gene (mtlD), were subjected to different levels of salinity stresses (1, 2 and 3 dS m−1) in pots under containment facility. Further, these lines were also characterized for various physio-biochemical parameters at flowering, pegging and pod formation stages. All the transgenic lines recorded significantly higher mannitol dehydrogenase (MTD) activity and mannitol accumulation than the wild type (WT). Under salinity stress, significantly higher levels of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase activities, while significantly lower levels of H2O2 and malondialdehyde contents, were recorded in the transgenics compared to WT. Similarly, significantly higher ascorbic acid and relative water content (RWC) were recorded in transgenic lines. The MTD activity showed positive correlation with various antioxidant enzymes, growth parameters and RWC, while negative correlation was recorded with H2O2 and malondialdehyde content at most of the plant growth stages. The mtlD transgenic peanut lines under pot conditions were found maintaining lower oxidative injuries, indicating amelioration of salinity-induced oxidative stress by enhanced protection mechanisms via mannitol accumulation and antioxidative responses. The best lines identified (MTD1 and MTD4) may be used further as pre-breeding source for imparting salinity stress tolerance in peanut. Besides, these lines may also be tested under open-field trials for release as salt-tolerant variety.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

GR:

Glutathione reductase

MTD:

Mannitol-1-phosphate dehydrogenase

POD:

Guaiacol peroxidase

SOD:

Superoxide dismutase

References

  1. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755. doi:10.1104/pp.102.003616

  2. Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotox Environ Safe 122:1–8. doi:10.1016/j.ecoenv.2015.07.003

    CAS  Article  Google Scholar 

  3. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Article  PubMed  Google Scholar 

  4. Akcay UC, Ercan O, Kavas M, Yildiz L, Yilmaz C, Oktem HA, Yucel M (2010) Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regul 61:21–28. doi:10.4161/psb.6.6.15340

    Article  Google Scholar 

  5. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 24:519–570. doi:10.1071/BI9620413

    Google Scholar 

  6. Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK (2009) Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol 166:1207–1217. doi:10.1016/j.jplph.2009.01.001

    CAS  Article  PubMed  Google Scholar 

  7. Bhauso TD, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR, Rajam MV (2014a) Over-expression of bacterial mtlD gene confers enhanced tolerance to salt-stress and water-deficit stress in transgenic peanut (Arachis hypogaea) through accumulation of mannitol. Aust J Crop Sci 8:413–421

    CAS  Google Scholar 

  8. Bhauso TD, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR, Patel K, Rajam MV (2014b) Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol. Sci World J. doi:10.1155/2014/125967

    Google Scholar 

  9. Boldt R, Scandalios JG (1997) Influence of UV-light on the expression of the CAT 2 and CAT 3 catalase genes in maize. Free Radic Biol Med 23:505–514. doi:10.1016/S0891-5849(97)00111-1

    CAS  Article  PubMed  Google Scholar 

  10. Bonin P, Groisillier A, Raimbault A, Guibert A, Boyen C, Tonon T (2015) Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp. Phytochemistry 117:509–520. doi:10.1016/j.phytochem.2015.07.015

    CAS  Article  PubMed  Google Scholar 

  11. Boote KJ (1982) Growth stages of peanut (Arachis hypogaea L.). Peanut Sci 9:35–40. doi:10.3146/i0095-3679-9-1-11

    Article  Google Scholar 

  12. Castillo FI, Penel I, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Plant Physiol 74:846–851. doi:10.1104/pp.74.4.846

  13. Chakraborty K, Sairam RK, Bhattacharya RC (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101. doi:10.1016/j.plaphy.2011.10.001

    CAS  Article  PubMed  Google Scholar 

  14. Chakraborty K, Singh AL, Kalariya KA, Goswami N, Zala PV (2015) Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities. Acta Bot Croat 74. doi:10.1515/botcro-2015-0011

  15. Chaturvedi AK, Patel MK, Mishra A, Tiwari V, Jha B (2014) The SbMT-2 Gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS One 9:e111379. doi:10.1371/journal.pone.0111379

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen P, Yan K, Shao H, Zhao S (2013) Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from yellow river delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS One 8:e83227. doi:10.1371/journal.pone.0083227

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cicero LL, Madesis P, Tsaftaris A, Piero ARL (2015) Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry 116:69–77. doi:10.1016/j.phytochem.2015.03.004

    Article  PubMed  Google Scholar 

  18. Conde A, Silva P, Agasse A, Conde C, Gero´s H (2011) Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant Cell Physiol 52:1766–1775. doi:10.1093/pcp/pcr121

    CAS  Article  PubMed  Google Scholar 

  19. Cummins I, Wortley DJ, Sabbadin F, He Z, Coxon CR, Straker HE, Sellars JD, Knight K, Edwards L, Hughes D, Kaundun SS, Hutchings S, Steel PG, Edwards R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Nat Acad Sci USA 110:5812–5817

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Dellavalle NB (1992) Determination of specific conductance in supernatant 1:2 soil:water solution. Handbook on reference methods for soil analysis. Soil and Plant Analysis Council, Athens, pp 44–50

    Google Scholar 

  21. Dhindsa RA, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 126:93–101. doi:10.1093/jxb/32.1.93

    Article  Google Scholar 

  22. FAOSTAT (2014) FAO statistics division 2015. http://faostat.fao.org/ Accessed 03 September 2015

  23. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254. doi:10.1111/j.1399-3054.1997.tb04780.x

    CAS  Article  Google Scholar 

  24. Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254. doi:10.1093/jexbot/53.372.1249

    CAS  Article  PubMed  Google Scholar 

  25. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    CAS  Article  PubMed  Google Scholar 

  26. Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M (2014) Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS One 9:e99110. doi:10.1371/journal.pone.0099110

    Article  PubMed  PubMed Central  Google Scholar 

  27. Iwamoto K, Kawanobe H, Ikawa T, Shiraiwa Y (2003) Characterization of salt regulated mannitol-1-phosphate dehydrogenase in the red alga Caloglossa continua. Plant Physiol 133:893–900.doi:10.1104/pp.103.026906

  28. Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103:267–277. doi:10.1007/s11240-010-9776-7

    CAS  Article  Google Scholar 

  29. Li Q, Li Y, Li C, Yu X (2012) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen and salt stresses in tomato. Czech J Genet Plant Breed 48:74–86

    Google Scholar 

  30. Li XY, Liu X, Yao Y, Li Y, Liu S, He C, Li J, Lin Y, Li L (2013) Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci 14:12827–12842. doi:10.3390/ijms140612827

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lopez-Munguia A, Hernandez-Romero Y, Pedraza-Chaverri J, Miranda-Molina A, Regla I, Martinez A, Castillo E (2011) Phenylpropanoid glycoside analogues: enzymatic synthesis, antioxidant activity and theoretical study of their free radical scavenger mechanism. PLoS One 6:e20115. doi:10.1371/journal.pone.0020115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Lowry OH, Rosenbrough JJ, Farr AL, Randall RJ (1951) Estimation of protein with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  33. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    CAS  Article  PubMed  Google Scholar 

  34. Martinez-Beltran J, Manzur CL (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the international salinity forum, Riverside, pp 311–313

  35. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. doi:10.1111/j.1365-3040.2009.02041.x

    CAS  Article  PubMed  Google Scholar 

  36. Mishra GP, Radhakrishnan T, Kumar A, Thirumalaisamy PP, Kumar N, Bosamia TC, Nawade B, Dobaria JR (2015) Advancements in molecular marker development and their applications in the management of biotic stresses in peanuts. Crop Prot. doi:10.1016/j.cropro.2015.07.019

    Google Scholar 

  37. Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170. doi:10.1111/j.1399-3054.1983.tb04162.x

    CAS  Article  Google Scholar 

  38. Nakamura Y, Ikawa T (1993) Purification and properties of NADH: nitrate reductase from the red alga Porphyra yezoensis. Plant Cell Physiol 34:1239–1249

    CAS  Google Scholar 

  39. Nakano Y, Asada K (1981) Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol 21:1295–1307

    Google Scholar 

  40. Nguyen TX, Nguyen T, Alameldin H, Goheen B, Loescher W, Sticklen M (2013) Transgene pyramiding of the HVA1 and mtlD in T3 Maize (Zea mays L.) plants confers drought and salt tolerance, along with an increase in crop biomass. Int J Agron (article ID 598163). doi:10.1155/2013/598163

  41. Oupadissakoon C, Young CT, Mozingo RW (1980) Evaluation of free amino acid and free sugars contents in five lines of Virginia-type peanuts at five locations. Peanut Sci 5:31–34. doi:10.3146/i0095-3679-7-1-13

    Google Scholar 

  42. Pandurangaiah M, Rao GL, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C (2014) Overexpression of horsegram (Macrotyloma uniflorum Lam. Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol. doi:10.1007/s12033-014-9754-0

  43. Parida AK, Jha B (2013) Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis hypogaea L.) seedlings during salt stress. Acta Physiol Plant 35:2821–2832. doi:10.1007/s11738-013-1315-9

    CAS  Article  Google Scholar 

  44. Prabhavathi V, Rajam MV (2007) Mannitol accumulating transgenic eggplants exhibit enhanced resistance to fungal wilts. Plant Sci 173:50–54. doi:10.1016/j.plantsci.2007.04.004

    CAS  Article  Google Scholar 

  45. Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphate dehydrogenase gene. Mol Breed 9:137–147. doi:10.1023/A:1026765026493

    CAS  Article  Google Scholar 

  46. Rahnama H, Haghighat V, Hossain F, Behzad G (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532. doi:10.1007/s11738-010-0690-8

    CAS  Article  Google Scholar 

  47. Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013) Expression of rd29A: AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100. doi:10.1016/j.plaphy.2013.05.002

    CAS  Article  PubMed  Google Scholar 

  48. Ramel F, Sulmon C, Bogard M, Couee I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28. doi:10.1186/1471-2229-9-28

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Plant Physiol 115:137–149. doi:10.1104/pp.115.1.137

  50. Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9:e110507. doi:10.1371/journal.pone.0110507

    Article  PubMed  PubMed Central  Google Scholar 

  51. Singh R, Issar D, Zala PV, Nautiyal PC (2007) Variation in sensitivity to salinity in groundnut cultivars during seed germination and early seedling growth. JSAT Agric Res 5(1):1–7

    Google Scholar 

  52. Singh AL, Hariprassana K, Solanki RM (2008) Screening and selection of groundnut genotypes for tolerance of soil salinity. Aust J Crop Sci 1:69–77

    CAS  Google Scholar 

  53. Smith IK, Vierheller TLI, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithio bis (2-nitrobenzoic acid). Anal Biochem 175:408–413. doi:10.1016/0003-2697(88)90564-7

    CAS  Article  PubMed  Google Scholar 

  54. Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144. doi:10.1016/S1360-1385(96)80048-3

    Article  Google Scholar 

  55. Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43:139–146. doi:10.1016/j.plaphy.2005.01.009

    CAS  Article  PubMed  Google Scholar 

  56. Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806. doi:10.1111/j.1365-3040.1995.tb00584.x

    CAS  Article  Google Scholar 

  57. Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala K, Park SW (2011) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297–2307. doi:10.1007/s10529-011-0684-7

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research work was financially supported by the Indian Council of Agricultural Research, New Delhi, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Thankappan.

Additional information

Communicated by MG dos Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1860 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, K.G., Mandaliya, V.B., Mishra, G.P. et al. Transgenic peanut overexpressing mtlD gene confers enhanced salinity stress tolerance via mannitol accumulation and differential antioxidative responses. Acta Physiol Plant 38, 181 (2016). https://doi.org/10.1007/s11738-016-2200-0

Download citation

Keywords

  • Antioxidant enzymes
  • Groundnut
  • Mannitol dehydrogenase
  • Oxidative injury
  • Soil salinity