Skip to main content
Log in

Effects of nitrogen and phosphate enrichment on the activity of nitrate reductase of Ulva prolifera in coastal zone

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

As one of the main species causing “green tides”, Ulva prolifera always inhabits in estuarine areas with changes in salinity and nutrients. Reduced salinity may affect directly or indirectly the processes of uptake and assimilation of nitrate, in which the nitrate reductase (NR) activity play the crucial roles. In this experiment, we investigated the different effects of enriched nitrogen and phosphate on NR activity of Ulva prolifera at salinity 30, 15, and 5 psu. The results showed that when salinity being lowered NR activity decreased under no enrichment (CT) or PO4 3− enrichment condition. NO3 or combination with PO4 3− could significantly enhance NR activity at three salinities, among which the highest value occurred at 15 psu. Enrichment of NH4 + significantly decreased NR activity at 30 and 15 psu, but not at 5 psu. The results suggested NR of Ulva prolifera could be triggered by NO3 , especially at middle salinity, and keep low when exposed under hyposaline or NH4 + enrichment for long term to rapidly respond to pulse of NO3 in estuarine areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agüera E, Poblete L, de la Haba P, Maldonado JM (1999) Light modulation and in vitro effects of adenine nucleotides on leaf nitrate reductase activity in cucumber (Cucumis sativus). Physiol Plant 105:218–223

    Article  Google Scholar 

  • Ahmad A, Abdin MZ (1999) NADH: nitrate reductase and NAD(P)H: nitrate reductase activities in mustard seedlings. Plant Sci 143:1–8

    Article  CAS  Google Scholar 

  • Alström-Rapaport C, Leskinen E, Pamilo P (2010) Seasonal variation in the mode of reproduction of Ulva intestinalis in a brackish water environment. Aquat Bot 93:244–249

    Article  Google Scholar 

  • Berges JA, Hageman RH (1997) Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: a revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnol Oceanogr 40:82–93

    Article  Google Scholar 

  • Cabello-Pasini A, Macías-Carranza V, Abdala R et al (2011) Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). J Appl Phycol 23(3):363–369

    Article  CAS  Google Scholar 

  • Chow F, Oliveira MC (2008) Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): influence of different nitrogen sources. Appl Phycol 20:775–782

    Article  CAS  Google Scholar 

  • Cohen RA, Fong P (2004) Nitrogen uptake and assimilation in Ulva intestinalis (L.) Link (Chlorophyta): using 15N to determine preference during simultaneous pulses of nitrate and ammonium. J Exp Mar Biol Ecol 309:67–77

    Article  CAS  Google Scholar 

  • Dickson DM, Wyn Jones RG, Davenport J (1982) Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes. Planta 155:409–415

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Fei XG et al (2009) The possibility analysis of habitats, origin and reappearance of bloom green alga (Ulva prolifera) on inshore of western Yellow Sea. Chin J Oceanol Limnol 27:421–424

    Article  Google Scholar 

  • Flynn KJ (1991) Algal carbon-nitrogen metabolism: a biochemical basis for modeling the interactions between nitrate and ammonium uptake. Plankton Res 13:373–387

    Article  CAS  Google Scholar 

  • Han W, Chen LP, Zhang JH et al (2013) Seasonal variation of dominant free-floating and attached Ulva species in Rudong coastal area, China. Harmful Algae 28:46–54

    Article  Google Scholar 

  • Huovinen P, Gómez I, Orostegui M (2007) Patterns and UV sensitivity of carbon anhydrase and nitrate reductase activities in south Pacific macroalgae. Mar Biol 151(5):1813–1821

    Article  CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Lartigue J, Sherman TD (2002) Field assays for measuring nitrate reductase activity in Enteromorpha sp. (Chlorophyceae), Ulva sp. (Chlorophyceae), and Gelidium sp. (Rhodophyceae). J Phycol 38:971–982

    Article  CAS  Google Scholar 

  • Lartigue J, Sherman TD (2005) Response of Ulva sp. (Chlorophyceae) to a nitrate pulse: nitrate uptake, inorganic nitrogen storage and nitrate reductase activity. Mar Ecol Prog Ser 292:147–157

    Article  CAS  Google Scholar 

  • Lartigue J, Sherman TD (2006) A field Study of nitrogen Storage and nitrate reductase activity in the estuarine macroalgae Ulva lingulata (Chlorophyceae) and Gelidium pusillum (Rhodophyceae). Estuaries Coasts 29(4):699–708

    Article  CAS  Google Scholar 

  • Lartigue J, Neill A, Hayden BL (2003) The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquat Bot 75(4):339–350

    Article  CAS  Google Scholar 

  • Lin AP, Wang C, Pan GH et al (2011) Diluted seawater promoted the green tide of Ulva prolifera (Chlorophyta, Ulvales). Phycol Res 59:295–304

    Article  CAS  Google Scholar 

  • Liu F, Pang S, Chopin T et al (2013) Understanding the recurrent large-scale green tide in the Yellow Sea: temporal and spatial correlations between multiple geographical, aquacultural and biological factors. Mar Environ Res 83:38–47

    Article  CAS  PubMed  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University, Cambridge, p 366

    Book  Google Scholar 

  • Lopes PF, Oliveira MC, Colepicolo P (1997) Diurnal fluctuation of nitrate reductase activity in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Phycol 33:225–231

    Article  CAS  Google Scholar 

  • Luo MB, Liu F (2011) Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. J Exp Mar Biol Ecol 409:223–228

    Article  CAS  Google Scholar 

  • Lv YC, Xu G, Sun JN et al (2015) Phosphorus release from the soils in the Yellow River Delta: dynamic factors and implications for eco-restoration. Plant Soil Environ 61(8):339–343. doi:10.17221/666/2014-PSE

    CAS  Google Scholar 

  • Mackintosh C, Meek SEM (2001) Regulation of plant NR activity by reversible phosphorylation, 14-3-3 proteins and proteolysis. Cell Mol Life Sci 58:205–214

    Article  CAS  PubMed  Google Scholar 

  • Martins I, Oliveira JM, Flindt MR et al (1999) The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal)[J]. Acta Oecol 20(4):259–265

    Article  Google Scholar 

  • Nishikawa K, Machida H, Yamakoshi H et al (2006) Polyphosphate metabolism in an acidophilic alga Chlamydomonas acidophila KT-1 (Chlorophyta) under phosphate stress. Plant Sci 170(2):307–313

    Article  CAS  Google Scholar 

  • Pang S, Liu F, Shan T et al (2010) Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar Environ Res 69:207–215

    Article  CAS  PubMed  Google Scholar 

  • Phillips NR, Horn PJ, Wood HG (1993) The polyphosphate and ATP dependent glucokinase from Propionibacterium shermanii, both activities are catalyzed by the same protein. Arch Biochem Biophys 300:309–319

    Article  CAS  PubMed  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Ann Rev Plant Physiol Plant Biol 41(1):225–253

    Article  CAS  Google Scholar 

  • Tang X, Mu X, Shao HB et al (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437. doi:10.3109/07388551.2014.889080

    Article  PubMed  Google Scholar 

  • Teichberg M, Heffner LR, Fox S et al (2007) Nitrate reductase and glutamine synthetase activity, internal N pools, and growth of Ulva lactuca: responses to long and short-term N supply. Mar Biol 151(4):1249–1259

    Article  CAS  Google Scholar 

  • Viñegla B, Segovia M, Figueroa FL (2006) Effect of Artificial UV Radiation on Carbon and Nitrogen Metabolism in the Macroalgae Fucus spiralis L. and Ulva olivascens Dangeard. Hydrobiologia 560(1):31–42

    Article  Google Scholar 

  • Yan K, Shao HB et al (2013) Physiological adaptive mechanisms of plant grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant. doi:10.1007/s11738-013-1325-7

    Google Scholar 

  • Zhang L, Shao HB, Song L et al (2014) Spatial-temporal variation of rhizosphere soil microbial abundance and enzyme activities under different vegetation types in the coastal zone, Shandong, China. Plant Biosyst 148(3):403–409

    Article  Google Scholar 

Download references

Acknowledgments

The work was Supported by Jiangsu Agriculture Science and Technology Innovation Fund [CX-13-2041;CX(15)1005], Jiangsu Agriculture Science and Technology Support Project(BE2014335), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Shuangchuang Talent Plan of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaopu Liu or Hongbo Shao.

Additional information

Communicated by L. A. Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Liu, Z., Shao, H. et al. Effects of nitrogen and phosphate enrichment on the activity of nitrate reductase of Ulva prolifera in coastal zone. Acta Physiol Plant 38, 169 (2016). https://doi.org/10.1007/s11738-016-2178-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2178-7

Keywords

Navigation