Skip to main content
Log in

Gas exchange, carbon balance and stomatal traits in wild and cultivated rice (Oryza sativa L.) genotypes

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m−2 s−1 in cultivated species and 13.09 μmol O2 m−2 s−1 in wild spp., The mean R d is 2.09 μmol O2 m−2 s−1 and 2.31 μmol O2 m−2 s−1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m−2 s−1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acquaah G (2007) Principles of plant genetics and breeding. PP. Blackwell, Oxford, UK

    Google Scholar 

  • Barro F, Agustin GF, Jose MM (1996) Relation between photosynthesis and dark respiration in cereal leaves. J Plant Physiol 149:64–68. doi:10.1016/S0176-1617(96)80174-X

    Article  CAS  Google Scholar 

  • Chandra K, Das AK (2000) Correlation and interaction of physiological parameters in rice under rainfed transplanted condition. J Crop Res Assam Agric Univ 19:251–254

    Google Scholar 

  • Cook MG, Evans LT (1983) Some physiological aspects of the domestication and improvement of rice. Field Crops Res 6:219–238

    Article  Google Scholar 

  • Davey PA et al (2004) Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO2], but is increased with long-term growth in the field at elevated [CO2]. Plant Physiol 134:520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006) Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot 57(2):381–390

    Article  CAS  PubMed  Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geological time. Proc Natl Acad Sci USA 106:10343–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhart LM, Ward JK (2010) Plant responses to low CO2 of the past. New Phytol 188:674–695

    Article  PubMed  Google Scholar 

  • Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2011) Coordination of leaf photosynthesis, transpiration and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol 162:1632–1651

    Article  Google Scholar 

  • Goh CH, Oku T, Shimazaki K (1997) Photosynthetic properties of adaxial guard cells from Vicia leaves. Plant Sci 127:149–159

    Article  CAS  Google Scholar 

  • Goh CH, Hedrich R, Nam HG (2002) Evidence for the functional organization of chloroplast in adaxial guard cells of Vicia faba leaves by single cell analysis. Plant Sci 162:965–972

    Article  CAS  Google Scholar 

  • Gu J, Yin X, Stomph TJ, Wang H, Struik PC (2012) Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J Exp Bot 63:5137–5153. doi:10.1093/jxb/ers170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins WG, Huner NPN (2009) Introduction to plant physiology, 4th edn. ISBN 978-0-470-24766-2. Wiley

  • Horie T, Lubis I, Takai T, Ohsumi A, Kuwasaki K, Katsura K, Nii A (2003) Physiological traits associated with high yield potential in rice. In: Mew TW, Brar DS, Peng S, Dawe D, Hardy B (eds) Rice science: innovations and impact for livelihood. Los Ban˜os, The Philippines: IRRI, pp 117–145

  • Kajala K, Coushaff S, Karki S, Woodfield H, Tolley BJ (2011) Strategies for engineering a two celled C4 photosynthetic pathway into rice. J Exp Bot 62:3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Kiran TV, Rao YV, Subrahmanyam D, Rani NS, Bhadana VP, Rao PR, Voleti SR (2013) Variation in leaf photosynthetic characters in wild rice species. Photosynthetica 51:350–358

    Article  CAS  Google Scholar 

  • Leakay ADB, Xwa F, Gillespier KM, McGratha JM, Ainswortha EA, Ort DR (2009) Genomic basis for stimulated respiration by plants growing under elevated CO2. Proc Natl Acad Sci USA 106:3597–3602

    Article  Google Scholar 

  • Li X, Zhang G, Sun B, Zhang S, Zhang Y, Liao Y, Zhou Y, Xia X, Shi K, Yu J (2013) Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere. Sci Rep 3:3433. doi:10.1038/srep03433

    PubMed  PubMed Central  Google Scholar 

  • Makino A (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    Article  CAS  PubMed  Google Scholar 

  • Millow AT, Wheeler J, Soole KL, Day DA (2011) Organization an regulation of mitochondrial respiration in plants. Ann Rev Plant Biol. 62:79–104

    Article  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  CAS  PubMed  Google Scholar 

  • Ohsuni A, Kanemura T, Homma K, Horie T, Shiraiwa T (2007) Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.). Plant Prod Sci 10:322–328

    Article  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. In: Japan. Pla. Physiol., vol 24. Japan Sci. Soc. Press, Tokyo, pp 1–15

  • Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55

    Article  CAS  PubMed  Google Scholar 

  • Placido DF, Campbell Malachy T, Folsom Jing J, Cui Xinping, Kruger Greg R, Stephen Baenziger P, Harkamal W (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 16:1806–1819

    Article  Google Scholar 

  • Rajagopal V, Kasturibai KV, Voleti SR (1990) Screening of coconut genotypes for drought tolerance. Oleagineux 45:215–220

    Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apli 22:1–10

  • Sage RF (2001) Environmental and evolutionary pre conditions for the origin and diversification of the C4 photosynthesis syndrome. Plant Biol. 3:202–213

    Article  CAS  Google Scholar 

  • Sarwar AKM, Golam Abdul Karim A, Masud Rana SMA (2013) Influence of stomatal characteristics on yield and yield attributes of rice. J Bangladesh Agric Univ 11(1):47–52

    Google Scholar 

  • Schulze ED, Hall AE (1982) Stomatal responses water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Zeigler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Encyclo. Pl. Physiol, vol 12 B. Springer-Verlag, Berlin, pp 181–230

  • Second G (1985) Evolution relationship in the sativa group of Oryza 1 based in isozyme data. Gen Sel Evol 17:89–114

    Article  CAS  Google Scholar 

  • Subrahmanyam D, Voleti SR, Sailaja B (2011) Climate change impact on rice productivity. In: Climate change: impacts and adaptation in crop plants. Today and Tomarrow’s printers and publishers, pp 143-155

  • Sudharshan D, Adinarayana J, Raji Reddy D, Sreenivas G, Ninomiya S, Hirafuji M, Kiura T, Tanaka K, Desai UB, Merchant SN (2013) Evaluation of weather-based rice yield models in India. Int J Biometeorol 57:107–123

    Article  Google Scholar 

  • Swamy BPM, Sarla N (2008) Yield enhancing QTLs from wild species. Biotechnol Adv 26:106–120

    Article  CAS  PubMed  Google Scholar 

  • Tanaka (1976) Climatic influence on photosynthesis and respiration of rice International Rice Research Institute. In: Proceedings of the symposium on climate and rice Climate and Rice. Los Baños, Philippines, pp 223–248

  • Tausz M, Tausz-Posch S, Norton RM, Fitzgerald GJ, Nicolas ME (2011) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ Exp Bot 88:71–80

    Article  Google Scholar 

  • Tsunoda S, Fukoshima MT (1986) Leaf properties related to the photosynthetic response to drought in upland and lowland varieties. Ann Bot 58:531–539

    Article  Google Scholar 

  • Venora G, Calcagno F (1991) Study of stomatal parameters for selection of drought resistant Varieties in Triticum durum DESF. Euphytica 57:275–283

    Article  Google Scholar 

  • Wang Y, Noguchi K, Terashima I (2008) Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environ 31:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Yeo ME, Yeo AR, Flowers TJ (1994) Photosynthesis and photorespiration in the genus Oryza. J Exp Bot 45:553–560

    Article  CAS  Google Scholar 

  • Zhao M, Ding Z, Lafitte R, Sacks E, Dimaygua G, Holt D (2010) Photosynthetic characters in Oryza species. Photosynthetica 48(2):234–240

    Article  CAS  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Curr Opin Biotechnol. 19:153–159

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Tomecek MB, Gealy DR (2014) Assessment of cultivated and wild, weedy rice lines to concurrent changes in CO2 concentration and air temperature: determining traits for enhanced seed yield with increasing atmospheric CO2. Funct Plant Biol 41:236–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance received from ICAR, Ministry of Agriculture, Govt. of India (F.No. Phy/NICRA/2011-2012) is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Voleti.

Additional information

Communicated by S. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondamudi, R., Swamy, K.N., Rao, Y.V. et al. Gas exchange, carbon balance and stomatal traits in wild and cultivated rice (Oryza sativa L.) genotypes. Acta Physiol Plant 38, 160 (2016). https://doi.org/10.1007/s11738-016-2173-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2173-z

Keywords

Navigation