Physiological and biochemical responses of photomorphogenic tomato mutants (cv. Micro-Tom) under water withholding

Abstract

In addition to mediating photomorphogenesis, phytochromes are responsible for many abiotic stress responses, acting upon biochemical and molecular mechanisms of cell signaling. In this work, we measured the physiological and biochemical responses of phytochrome-mutant plants under water stress. In tomato (Solanum lycopersicum L.), the aurea mutant (au) is phytochrome-deficient and the high-pigment-1 mutant (hp1) has exaggerated light responses. We examined the effects of water withholding on water potential, leaf gas exchange, chlorophyll fluorescence, chloroplast pigment content and antioxidant enzyme activity in au and hp1 and their wild-type cultivar Micro-Tom (MT). Initial fluorescence and potential quantum efficiency of photosystem II (PSII) photochemistry were not affected by the treatment, but effective quantum yield of PSII, electron transport rate decreased and non-photochemical quenching increased significantly in MT. Under water withholding conditions, MT had higher malondialdehyde concentration than the mutants, but au had higher activities of catalase and ascorbate peroxidase compared to the other genotypes. The tolerance of mutants to the effects of water withholding may be explained by the higher activity of antioxidant enzymes in au and by a higher concentration of antioxidant compounds, such as carotenoids, in hp1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175. doi:10.3109/07388550903524243

    CAS  Article  PubMed  Google Scholar 

  2. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta Bioenerg 1143: 113–134. doi:10.1016/0005-2728(93)90134-2

  3. Auge GA, Rugnone ML, Cortés LE, González CV, Zarlavsky G, Boccalandro HE, Sánchez RA (2012) Phytochrome A increases tolerance to high evaporative demand. Physiol Plantarum 146:228–235. doi:10.1111/j.1399-3054.2012.01625.x

    CAS  Article  Google Scholar 

  4. Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plantarum 104:280–292. doi:10.1034/j.1399-3054.1998.1040217.x

    CAS  Article  Google Scholar 

  5. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759

    CAS  Article  Google Scholar 

  6. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. doi:10.1093/jxb/erh196

    CAS  Article  PubMed  Google Scholar 

  7. Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plantarum 19:47–64. doi:10.1007/s11738-997-0022-9

    CAS  Article  Google Scholar 

  8. Becker TW, Foyer C, Caboche M (1992) Light-regulated expression of the nitrate-reductase and nitrite-reductase genes in tomato and in the phytochrome-deficient aurea mutant of tomato. Planta 188:39–47. doi:10.1007/BF00198937

    CAS  Article  PubMed  Google Scholar 

  9. Benesová M, Holá D, Fischer L, Jedelský PL, Hnilicka F, Wilhelmová N, Rothová O, Kocová M, Procházková D, Honnerová J, Fridrichová L, Hnilicková H (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One 7:e38017. doi:10.1371/journal.pone.0038017

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biehler K, Haupt S, Beckmann J, Fock H, Becker TW (1997) Simultaneous CO2- and 16O2/18O2-gas exchange and fluorescence measurements indicate differences in light energy dissipation between the wild type and the phytochrome-deficient aurea mutant of tomato during water stress. J Exp Bot 48:1439–1449. doi:10.1093/jxb/48.7.1439

    CAS  Article  Google Scholar 

  11. Bilger W, Björkman O (1990) Role of xantophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185. doi:10.1007/BF00033159

    CAS  Article  PubMed  Google Scholar 

  12. Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II ana of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432. doi:10.1007/BF00341354

    Article  Google Scholar 

  13. Boccalandro HE, Ploschuk EL, Yanovsky MJ, Sánchez RA, Gatz C, Casal JJ (2003) Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiol 133:1539–1546. doi:10.1104/pp.103.029579

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol 150:1083–1092. doi:10.1104/pp.109.135509

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Boggs JZ, Loewy K, Bibee K, Heschel MS (2010) Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana. Plant Growth Regul 60:77–81. doi:10.1007/s10725-009-9427-3

    CAS  Article  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    CAS  Article  PubMed  Google Scholar 

  17. Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Ann Rev Plant Physiol 29:345–378. doi:10.1146/annurev.pp.29.060178.002021

    CAS  Article  Google Scholar 

  18. Carvalho RF, Aidar ST, Azevedo RA, Dodd IC, Peres LEP (2011a) Enhanced transpiration rate in the high pigment 1 tomato mutant and its physiological significance. Plant Biol 13:546–550. doi:10.1111/j.1438-8677.2010.00438.x

    CAS  Article  PubMed  Google Scholar 

  19. Carvalho RF, Campos ML, Azevedo RA (2011b) The role of phytochrome in stress tolerance. J Integr Plant Biol 53:920–929. doi:10.1111/j.1744-7909.2011.01081.x

    CAS  Article  PubMed  Google Scholar 

  20. Casal JJ, Ballaré CL, Tourn M, Sánchez RA (1994) Anatomy, growth and survival of a long-hypocotyl mutant of Cucumis sativus deficient in phytochrome B. Ann Bot 73:569–575. doi:10.1006/anbo.1994.1071

    CAS  Article  Google Scholar 

  21. Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521. doi:10.1016/j.tplants.2007.10.001

    CAS  Article  PubMed  Google Scholar 

  22. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  23. D’Amico-Damião V, Cruz FJR, Gavassi MA, Santos DMM, Melo HC, Carvalho RF (2015) Photomorphogenic modulation of water stress in tomato (Solanum lycopersicum L.): the role of phytochromes A, B1 and B2. J Hort Sci Biotechnol 90:25–30

    Google Scholar 

  24. Dias T, Melo HC, Alves FRR, Carvalho RF, Carneiro KS, Sousa CM (2015) Compostos fenólicos e capacidade antioxidante em frutos de tomateiros mutantes fotomorfogenéticos. Ciênc Rural 45:782–787. doi:10.1590/0103-8478cr20140098

    Article  Google Scholar 

  25. Drumm H, Schopfer P (1974) Effect of phytochrome on development of catalase activity and isoenzyme pattern in mustard (Sinapis alba L.) seedlings. Planta 120:13–30. doi:10.1007/BF00388268

    CAS  Article  PubMed  Google Scholar 

  26. Eberhard S, Finazzi G, Wollman F (2008) The dynamics of photosynthesis. Ann Rev Genet 42:463–515. doi:10.1146/annurev.genet.42.110807.091452

    CAS  Article  PubMed  Google Scholar 

  27. Ehleringer J (1981) Leaf absorptances of Mohave and Sonoran desert plants. Oecologia 49:366–370

    Article  Google Scholar 

  28. Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    CAS  Article  Google Scholar 

  29. Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309

    CAS  PubMed  Google Scholar 

  30. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    CAS  Article  PubMed  Google Scholar 

  31. González CV, Ibarra SE, Piccoli PN, Botto JF, Boccalandro HE (2012) Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana. Plant Cell Environ 35:1958–1968. doi:10.1111/j.1365-3040.2012.02529.x

    Article  PubMed  Google Scholar 

  32. Haupt-Herting S, Fock HP (2000) Exchange of oxygen and its role in energy dissipation during drought stress in tomato plants. Physiol Plantarum 110:489–495. doi:10.1111/j.1399-3054.2000.1100410.x

    CAS  Article  Google Scholar 

  33. Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. doi:10.1104/pp.84.2.450

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    CAS  Article  PubMed  Google Scholar 

  35. Hughes J (2010) Phytochrome three-dimensional structures and functions. Biochem Soc T 38:710–716. doi:10.1042/BST0380710

    CAS  Article  Google Scholar 

  36. Jefferies RA (1994) Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum). Physiol Plantarum 90:93–97. doi:10.1111/j.1399-3054.1994.tb02197.x

    CAS  Article  Google Scholar 

  37. Jones DH (1984) Phenyalanine ammonia-lyase: regulation of its induction and its role in plant development. Phytochem 23:1349–1359. doi:10.1016/S0031-9422(00)80465-3

    CAS  Article  Google Scholar 

  38. Kar M, Mishra D (1976) Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319. doi:10.1104/pp.57.2.315

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Kendrick RE, Kerckhoffs LHJ, Van Tuinen A, Koornneef M (1997) Photomorphogenic mutants of tomato. Plant Cell Environ 20:746–751. doi:10.1046/j.1365-3040.1997.d01-109.x

    CAS  Article  Google Scholar 

  40. Kilambi HV, Kumar R, Sharma R, Sreelakshmi Y (2013) Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits. Plant Physiol 161:2085–2101. doi:10.1104/pp.112.212191

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kraepiel Y, Rousselin P, Sotta B, Kerhoas L, Einhorn J, Caboche M, Miginiac E (1994) Analysis of phytochrome- and ABA-deficient mutants suggests that ABA degradation is controlled by light in Nicotiana plumbaginifolia. Plant J 6:665–672. doi:10.1046/j.1365-313X.1994.6050665.x

    CAS  Article  Google Scholar 

  42. Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Plant Physiol 110:903–912

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579. doi:10.1093/aob/mcn244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Li RH, Guo PG, Baum M, Grando S, Ceccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China 5:751–757. doi:10.1016/S1671-2927(06)60120-X

    CAS  Article  Google Scholar 

  45. Lima ALS, Da Matta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247. doi:10.1016/S0098-8472(01)00130-7

    CAS  Article  Google Scholar 

  46. Liu Y, Roof S, Ye Z, Barry C, Van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101:9897–9902. doi:10.1073/pnas.0400935101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X (2012) Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78:289–300. doi:10.1007/s11103-011-9860-3

    CAS  Article  PubMed  Google Scholar 

  48. López-Juez E, Nagatani A, Buurmeijer WF, Peters JL, Furuya M, Kendrick RE, Wesselius JC (1990) Response of light-grown wild-type and aurea-mutant tomato plants to end-of-day far-red light. J Photochem Photobiol B: Biol 4:391–405. doi:10.1016/1011-1344(90)85018-R

    Article  Google Scholar 

  49. Lu C, Zhang J (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206. doi:10.1093/jxb/50.336.1199

    CAS  Article  Google Scholar 

  50. Melo HC, Castro EM, Soares AM, Oliveira C, Ramos SJ (2009) Características fisiológicas de microtomateiros fitocromo-mutantes. Ciênc Agrotec 33:1213–1219. doi:10.1590/S1413-70542009000500003

    Article  Google Scholar 

  51. Mishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, La Vecchia G, Trtílek M, Cellini F, Nedbal L (2012) Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci 182:79–86. doi:10.1016/j.plantsci.2011.03.022

    CAS  Article  PubMed  Google Scholar 

  52. Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205–214. doi:10.1016/j.envexpbot.2004.03.015

    CAS  Article  Google Scholar 

  53. Mohr H, Drumm H, Schmidt R, Steinitz B (1979) The effect of light pretreatments on phytochrome-mediated induction of anthocyanin and of phenyalanine ammonia-lyase. Planta 146:369–376. doi:10.1007/BF00387810

    CAS  Article  PubMed  Google Scholar 

  54. Monteiro CC, Rolão MB, Franco MR, Peters LP, Cia MC, Capaldi FR, Carvalho RF, Gratão PL, Rossi ML, Martinelli AP, Peters LEP, Azevedo RA (2012) Biochemical and histological characterization of tomato mutants. An Acad Bras Ciênc 84:573–585. doi:10.1590/S0001-37652012005000022

    CAS  Article  PubMed  Google Scholar 

  55. Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S (2000) Are diverse signalling pathways integrated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy? Philos Trans R Soc London, Ser B 355:1531–1540. doi:10.1098/rstb.2000.0713

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Muramoto T, Kami C, Kataoka H, Iwata N, Linley PJ, Mukougawa K, Yokota A, Kohchi T (2005) The tomato photomorphogenetic mutant aurea is deficient in phytochromobilin synthase for phytochrome chromophore biosynthesis. Plant Cell Physiol 46:661–665. doi:10.1093/pcp/pci062

    CAS  Article  PubMed  Google Scholar 

  57. Murshed R, Lopez-Lauri F, Sallanon H (2013) Effects of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicum L. cv. Micro-Tom). Physiol Mol Biol Plants 19:363–378. doi:10.1007/s12298-013-0173-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  59. Noctor G, Foyer CH (1998) Ascorbate and gluthatione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    CAS  Article  Google Scholar 

  60. Ouedraogo M, Hubac C (1982) Effect of far red light on drought resistance of cotton. Plant Cell Physiol 23:1297–1303

    Google Scholar 

  61. Phimchan P, Chanthai S, Bosland PW, Techawongstien S (2014) Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase and peroxidase activities in Capsicum under drought stress. J Agric Food Chem 62:7057–7062. doi:10.1021/jf4051717

    CAS  Article  PubMed  Google Scholar 

  62. Pizarro L, Stange C (2009) Light-dependent regulation of carotenoid biosynthesis in plants. Cienc Investig Agrar 36:143–162. doi:10.4067/S0718-16202009000200001

    Google Scholar 

  63. Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, Najafi F (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol Cracoviensia Ser Bot 53:47–56. doi:10.2478/v10182-011-0007-2

    Google Scholar 

  64. Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell Environ 23:1397–1405. doi:10.1046/j.1365-3040.2000.00650.x

    CAS  Article  Google Scholar 

  65. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:10.1016/j.jplph.2004.01.013

    CAS  Article  Google Scholar 

  66. Schittenhelm S, Menge-Hartmann U, Oldenburg E (2004) Photosynthesis, carbohydrate metabolism and yield of phytochrome-B-overexpressing potatoes under different light regimes. Crop Sci 44:131–143. doi:10.2135/cropsci2004.1310

    CAS  Article  Google Scholar 

  67. Schopfer P (1977) Phytochrome control of enzymes. Annu Rev Plant Physiol 28:223–252. doi:10.1146/annurev.pp.28.060177.001255

    CAS  Article  Google Scholar 

  68. Schöttler MA, Tóth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5:188. doi:10.3389/fpls.2014.00188

    PubMed  PubMed Central  Google Scholar 

  69. Sharma R, Sopory SK, Guha-Mukherjee S (1976) Phytochrome regulation of peroxidase activity in maize. Plant Sci Lett 6:69–75. doi:10.1016/0304-4211(76)90181-4

    CAS  Article  Google Scholar 

  70. Siegel BZ (1993) Plant peroxidases: an organismic perspective. Plant Growth Regul 12:303–312. doi:10.1007/BF00027212

    CAS  Article  Google Scholar 

  71. Silva FB, Costa AC, Alves RRP, Megguer CA (2014) Chlorophyll fluorescence as an indicator of cellular damage by glyphosate herbicide in Raphanus sativus L. plants. Am J Plant Sci 5:2509–2519. doi:10.4236/aips.2014.516265

    CAS  Article  Google Scholar 

  72. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58. doi:10.1111/j.1469-8137.1993.tb03863.x

    CAS  Article  Google Scholar 

  73. Sokolskaya SV, Sveshnikova NV, Kochetova GV, Solovchenko AE, Gostimski SA, Bashtanova OB (2003) Involvement of phytochrome in regulation of transpiration: red-/far red-induced responses in the chlorophyll-deficient mutant of pea. Func Plant Biol 30:1249–1259. doi:10.1104/pp.112.212191

    CAS  Article  Google Scholar 

  74. Terry MJ, Kendrick RE (1996) The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J Biol Chem 271:21681–21686. doi:10.1074/jbc.271.35.21681

    CAS  Article  PubMed  Google Scholar 

  75. Thomsen B, Drumm-Herrel H, Mohr H (1992) Control of the appearance of ascorbate peroxidase (EC 1.11.1.11) in mustard seedling cotyledons by phytochrome and photooxidative treatments. Planta 186:600–608. doi:10.1007/BF00198042

    CAS  Article  PubMed  Google Scholar 

  76. Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA 107:11626–11631. doi:10.1073/pnas.0914428107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Wang FF, Lian HL, Kang CY, Yang HQ (2010) Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant 3:246–259. doi:10.1093/mp/ssp097

    CAS  Article  PubMed  Google Scholar 

  78. Wang ZX, Chen L, Ai J, Qin HY, Liu YX, Xu PL, Jiao ZQ, Zhao Y, Zhang QT (2012) Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.). Photosynthetica 50:189–196. doi:10.1007/s11099-012-0023-9

    CAS  Article  Google Scholar 

  79. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. doi:10.1016/S0176-1617(11)81192-2

    CAS  Article  Google Scholar 

  80. Wellmann E, Schopfer P (1975) Phytochrome-mediated de novo synthesis of phenyalanine ammonia-lyase in cell suspension cultures of parsley. Plant Physiol 55:822–827. doi:10.1104/pp.55.5.822

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Zhong HH, Young JC, Pease EA, Hangarter RP, McClung CR (1994) Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol 104:889–898. doi:10.1104/pp.104.3.889

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhong HH, Resnick AS, Straume M, McClung CR (1997) Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression. Plant Cell 9:947–955. doi:10.1105/tpc.9.6.947

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Zucker M (1965) Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol 40:779–784. doi:10.1104/pp.40.5.779

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) for the Master’s Program Scholarship granted (Call 03/13).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frederico Rocha Rodrigues Alves.

Additional information

Communicated by LA Kleczkowski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alves, F.R.R., de Melo, H.C., Crispim-Filho, A.J. et al. Physiological and biochemical responses of photomorphogenic tomato mutants (cv. Micro-Tom) under water withholding. Acta Physiol Plant 38, 155 (2016). https://doi.org/10.1007/s11738-016-2169-8

Download citation

Keywords

  • Aurea
  • High-pigment-1
  • Chlorophyll fluorescence
  • Antioxidant enzymes