Skip to main content
Log in

Identification of the medicinal plant species with the potential for remediation of hydrocarbons contaminated soils

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this work we describe several plants identified in a field site within 91,659 m radius of influence of a former refinery contaminated with benzene, toluene, ethylbenzene and xylenes (BTEX), as well as light hydrocarbon fraction (C5–C10, LHF), middle hydrocarbon fraction (C10–C28, MHF) and heavy hydrocarbon fraction (C28–C40, HHF). Nine medicinal plant species were identified at the site and the number of individuals of each was determined as Sida rhombifolia (166), grasses (133), Baccharis salicifolia-Senecia salignus (115), Fraxinus sp (67), Wigandia orens (39), Buddleia cordata (27), Nicotiana glauca (26) and Phytolacca icosandra (13). An important feature of the identified plants was their medicinal properties, in addition to their survival at field conditions with high hydrocarbon concentrations (LHF, MHF, HHF and BTEX), that make them suitable species for soil phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam G, Duncan HJ (2002) Influence of diesel fuel on seed germination. Environ Pollut 120:363–370

    Article  CAS  PubMed  Google Scholar 

  • Aslund M, Zeeb B, Rutter A, Reimer K (2007) In situ phytoextraction of polychlorinated biphenyl-(PCB) contaminated soil. Sci Total Environ 374:1–12

    Article  Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants: diversity and environmental aspects of hydrocarbon biodegradation. Bioscience 45(5):332–338

    Article  Google Scholar 

  • Burken JG (2004) Uptake and metabolism of organic compounds: green-liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants, Wiley-interscience series of texts and monographs. John Wiley and Sons Inc., New York (ISBN: 9780471394358)

    Google Scholar 

  • Cao S, Rossant Ch, Ng S, Buss AD, Butler MS (2003) Phenolic derivatives from Wigandia urens with weak activity against the chemokine receptor CCR5. Phytochemistry 64:987–990

    Article  CAS  PubMed  Google Scholar 

  • Castillo S, Martínez-Orea Y, Romero-Romaro M, Guadarrama-Chavez P, Nuñez-Castillo O, Sánchez-Gallen I, Maeve JA (2007) La reserva Ecológica del Pedregal de San Ángel: Aspectos florísticos y ecológicos. Universidad Nacional Autónoma de México, México, DF

    Google Scholar 

  • Cherian S, Oliveira M (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  PubMed  Google Scholar 

  • Cho C, Yavuz-Corapcioglu M, Park S, Sung K (2008) Effects of grasses on the fate of VOCs in contaminated soil and air. Water Air Soil Pollut 187:243–250

    Article  CAS  Google Scholar 

  • Cvikrova M, Gemperlova L, Eder J, Zazimalova E (2008) Excretion of polyamines in alfalfa and tobacco suspension cultured cells and its possible role in maintenance of intracellular polyamine contents. Plant Cell Rep 27:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Dhalwal K, Yogesh S, Deshpande A, Purohit P (2007) Evaluation of in vitro antioxidant activity of Sida rhombifolia (L.) Ssp. retusa (L.). J Med Food 10(4):683–688

    Article  CAS  PubMed  Google Scholar 

  • Díaz LM, Díaz A, Carrillo R, González M (2005) Plantas que se desarrollan en áreas contaminadas con residuos mineros. In: González Chávez MC, Pérez Moreno J, Carrillo González R (eds) El sistema planta-microorganismo-suelo en áreas contaminadas con residuos de minas. Colegio de Postgraduados, México

    Google Scholar 

  • Environmental Protection Agency’s (EPA) 1664A/1999 (1999) N-Hexane extractable material (HEM; oil and grease) and silica gel treated N-hexane. Extractable material (SGT-HEM; non-polar material) by extraction and gravimetry

  • Environmental Protection Agency’s (EPA) 8015B/1996 (1996) Internal quality control procedures for total petroleum hydrocarbons (TPH) as gasoline and diesel. Nonhalogenated organics using GC/FID

  • Foster A, Barnes N, Speight R, Morris P, Keane MA (2013) Role of amine oxidase expression to maintain putrescine homeostasis in Rhodococcus opacus. Chemical Engineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, EH 14 4AS, UK. Enzyme and microbial technology 04/2013; 52 (4–5): 286–95. doi:10.1016/j.enzmictec.2013.01.003

  • Furer V, Hersch M, Silvetzki N, Breuer G, Zevin S (2011) Nicotiana glauca (tree tobacco) intoxication-two cases in one family. Med Toxicol 7:47–51

    Article  Google Scholar 

  • García M, Donadel OJ, Ardanaz CE, Tonn CE, Sosa ME (2005) Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manag Sci 61(6):612–618

    Article  PubMed  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acid 34:35–45

    Article  CAS  Google Scholar 

  • Hernández-Villegas MM, Borges-Argáez R, Rodríguez-Vivas RI, Torres-Acosta JFJ, Méndez-González M, Cáceres-Farfán M (2012) In vivo anthelmintic activity of Phytolacca icosandra against Haemonchus contortus in goats. Vet Parasitol 189(2–4):284–290

    Article  PubMed  Google Scholar 

  • Ho C, Aplegate B, Banks MK (2007) Impact of microbial/interactions on the transformations of polycyclic aromatic hydrocarbons in rhizosphere of Festuca arundinacea. Int J Phytorem 9:107–114

    Article  CAS  Google Scholar 

  • Jean-Pierre N (2003) Manual de plantas medicinales del altiplano de Guatemala para el uso familiar. Asociación Médicos Descalzos, Chinique - El Quiché - Guatemala, p 272

  • Jones DL, Kuzyakov Y, Hodge A (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Kane CW (2006) Baccharis spp., Tucson clinic of botanical medicine. http://tcbmed.com/Newsletters/baccharis_spp.html

  • Kim KJ, Jung H, Won H, Lee JA, Kays S (2014) Volatile toluene and xylene removal efficiency of foliage plants as affected by top to root zone size. HortScience 49(2):230–234

    CAS  Google Scholar 

  • Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kostova I (2001) Fraxinus ornus L. Fitoterapia 72(5):471–480

    Article  CAS  PubMed  Google Scholar 

  • Kulakow PA, Schwab AP, Banks MK (2000) Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. Int J Phytorem 2:297–317

    Article  CAS  Google Scholar 

  • Labra-Cardón D, Guerrero-Zúñiga LA, Rodríguez-Tovar A, Montes-Villafán S, Pérez-Jiménez S, Rodríguez-Dorantes A (2012) Respuesta de crecimiento y tolerancia a metales pesados de Cyperus elegans y Echinochloa polystachya inoculadas con una rizobacteria aislada de un suelo contaminado con hidrocarburos derivados del petróleo. Rev Int Contam Ambient 28(1):7–16

    Google Scholar 

  • Liu H, Weisman D, Yuan-bei Y, Cui B, Yan-he H, Colón-Carmona A, Wang Z (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • Liu X, Li X, Chermaine O, Chu Z (2013) Progress of phytoremediation: focus on new plant and molecular mechanism. J Plant Biol Soil Health 1:1–5

    CAS  Google Scholar 

  • Ma X, Andrew A, Burken J, Albers S (2004) Phytoremediation of MTBE with hybrid poplar trees. Int J Phytorem 4:157–167

    Article  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  CAS  PubMed  Google Scholar 

  • Mapelli S, Brambilla I, Radyukina N, Ivanov Y, Kartashov A, Reggiani R, Kuznetsov V (2008) Free and bound polyamines changes in different plants as a consequence of UV-b light irradiation. Gen Appl Plant Physiol 34(1–2):55–66

    CAS  Google Scholar 

  • Martínez M, Apan T, Lastra AL, Bye R (1998) A comparative study of the analgesic and anti-inflammatory activities of pectolinarin isolated from Cirsium subcoriaceum and linarin isolated from Buddleia cordata. Planta Med 64:134–137

    Article  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2004) Phytoremediation: transformation and control of contaminants. Environmental science and technology: a Wiley-interscience series of texts and monographs. John Wiley & Sons, New York, p 1024

    Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mentaberry A (2008) Fitorremediación. Curso de Agrobiotecnología, Departamento de fisiología, biología molecular y celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires

    Google Scholar 

  • Miretzky P, Saralegui A, Fernández-Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals. Chemosphere 57:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Mondragón J, Vibrans H, Tenorio-Lezama P (2005) Malezas de México. Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO). http://www.conabio.gob.mx/malezasdemexico/euphorbiaceae/ricinuscommunis/fichas/ficha.html

  • Ndimele PE (2010) A review on the phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13:715–722

    Article  CAS  PubMed  Google Scholar 

  • Neill SO, Gould KS, Kilmartin PA, Mitchell KA, Markham KR (2002) Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant Cell Environ 25:539–547

    Article  CAS  Google Scholar 

  • Norma Official Mexicana NOM-138-SEMARNAT/SSA1-2012 (2012) Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y especificaciones para la remediación

  • Norman EM (2000) Buddlejaceae. Flora Neotropica 81, New York Botanical Garden, USA

  • Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytorem 6:119–137

    Article  CAS  Google Scholar 

  • Perez-Barron G, Avila-Acevedo JG, Garcıa-Bores A, Montes S, García-Jimenez S, Leon-Rivera I, Rubio-Osornio M, Monroy-Noyola A (2014) Neuroprotective effect of Buddleja cordata methanolic extract in the 1-methyl-4-phenylpyridinium Parkinson’s disease rat model. Nat Med. doi:10.1007/s11418-014-0866-4

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Cruz M, Trujillo-Narcía A, Ferrera-Cerrato R, Rodríguez-Vázquez R, Volke-Haller V, Sánchez-García P, Fernández-Linares L (2006) Fitorremediación de suelos con benzo(a)pireno mediante microorganismos autóctonos y pasto alemán (Echinochloa polystachya (H.B.K.) HITCHC). Universidad y Ciencia 22(1):1–12

    Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272

    Article  CAS  Google Scholar 

  • Rzedowski GC, Rzedowski J (2001) Flora fanerogámica del Valle de México. 2a (ed) Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán, México, p 1406

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Shaman Australis Ethnobotanicals (2002) Sida rhombifolia, common sida. http://www.shamanaustralis.com/Website/Sidarhombifolia.html

  • Smith EC, Jones C (2000) Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation. Sci Total Environ 246:207–236

    Article  CAS  PubMed  Google Scholar 

  • Solís-Domínguez FA, Gonzalez-Chavez R, Carrillo-González R, Rodriguez-Vazquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141:630–636

    Article  PubMed  Google Scholar 

  • Sorek A, Atzmon N, Dahan O, Gerstl Z, Kushisin L, Laor Y, Mingelgrin U, Nasser A, Ronen D, Tsechansky L, Weisbrod N, Graber ER (2008) Phytoscreening: the use of trees for discovering subsurface contamination by VOCs. Environ Sci Technol 42:536–542

    Article  CAS  PubMed  Google Scholar 

  • Steenkamp PA, van Heerden FR, van Wyk B (2002) Accidental fatal poisoning by Nicotiana glauca: identification of anabasine by high performance liquid chromatography/photodiode array/mass spectrometry. Forensic Sci Int 127:208–217

    Article  CAS  PubMed  Google Scholar 

  • Tascón MR (1997) Contribución al estudio de la flora medicinal de San Nicolás Totolapan, delegación Magdalena Contreras. Tesis licenciatura de la carrera de Biología. FES-Iztacala, UNAM, México

    Google Scholar 

  • Tian X, Liu J, Zhou G, Peng P, Wang X, Wang C (2008) Estimation of the annual scavenged amount of polycyclic aromatic hydrocarbons by forests in the Pearl River Delta of Southern China. Environ Pollut 156:306–315

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, da Fonseca M, de Carvalho CR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  PubMed  Google Scholar 

  • United States Environmental Protection Agency (1994) Introduction to Washington DC, aromatic volatile organics by gas chromatography. Method 8020A

  • United States Environmental Protection Agency (1996) Purge and trap for aqueous samples, EPA SW-846, Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington DC, Method 5030B

  • United States Environmental Protection Agency (2000) Introduction to Washington DC, USA

  • United States Environmental Protection Agency (2002) Method 5035A. Closed system purge and trap extraction for volatile organics in soil and waste samples, EPA SW-846, Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington DC

  • Vázquez-Yanes C, Batis MA, Alcocer SM, Gual-Díaz M, Dirzo SC (1999) Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. Reporte técnico inédito del proyecto J084. CONABIO—Instituto de Ecología, Universidad Nacional Autónoma de México

  • Vibrans H, Hanan-Alipi AM, Mondragón-Pichardo J (2007) Malezas de México. Ficha- Senecio salignus. http://www.conabio.gob.mx/malezasdemexico/asteraceae/senecio-salignus/fichas/ficha.html

  • Wenzel W, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and tolerant plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  PubMed  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2003) Changes in ethylene production and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Sci 164:557–563

    Article  CAS  Google Scholar 

  • Zavala-Cruz J, Gavi-Reyes F, Adams-Schroeder RH, Ferrera-Cerrato R, Palma-López D, Vaquera-Huerta H, Domínguez-Ezquivel JM (2005) Oil spills on soils and adaptation of tropical grass in Activo Cinco Presidentes, Tabasco, México. Terra Latinoam 23:293–302

    Google Scholar 

  • Zavala-Sánchez Miguel A, Pérez-González C, Arias-García L, Pérez-Gutiérrez S (2009) Anti-inflammatory activity of Wigandia urens and Acalypha alopecuroides. Afr J Biotechnol 8(21):5901–5905

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refugio Rodríguez-Vázquez.

Additional information

Communicated by S. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Vázquez, R., Sánchez, S., Mena-Espino, X. et al. Identification of the medicinal plant species with the potential for remediation of hydrocarbons contaminated soils. Acta Physiol Plant 38, 23 (2016). https://doi.org/10.1007/s11738-015-2036-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2036-z

Keywords

Navigation