Skip to main content

Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification

Abstract

Despite many reports on regeneration of Vitis after cryopreservation, there is no cryopreserved collection of its germplasm. Some Vitis genotypes are reported to be recalcitrant to cryopreservation. Droplet vitrification, considered to be an emerging generic method of cryopreservation, has been applied only to a limited extent in Vitis. In the present study, we first tested the toxicity of plant vitrification solution in both axillary and apical buds in six diverse Vitis accessions. Droplet vitrification was then applied using 50 % predicted survival time of apical and axillary buds in vitrification solution after pre-treatment of donor plantlets with salicylic acid, a substance known to have a protective role in abiotic stress responses. Results showed that axillary buds are more tolerant of vitrification solution than apical buds and required longer treatment time. Pre-treatment of donor plantlets with 0.1 mM salicylic acid resulted in a significantly higher protection to cryopreserved buds, but serial dehydration in sucrose alone had little effect. Pre-treatment with salicylic acid enabled successful cryopreservation of previously recalcitrant rootstock 41B, albeit at a low regeneration rate. For other genotypes, cryopreservation of 6–11 explants will be sufficient to regenerate at least one plant at 95 % probability. This is the first report of successful cryopreservation of a set of diverse Vitis genotypes by droplet vitrification, and we show that pre-treatment of donor plantlets with salicylic acid is critical for the success. This research will contribute to conservation of Vitis germplasm in a cost-effective way avoiding the risks associated with field-based collections.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alleweldt G, Dettweiler E (1994) The genetic resources of Vitis: world list of grapevine collections, 2nd edn. Geilweilerhof, Siebeldingen

    Google Scholar 

  2. Barba M, Lernia Gd, Carimi F, Carra A, Abbate L, Chiota G (2008) Rescuing autochthonous grape vines thanks to virus elimination. Informatore Agrario Supplemento 64(10):14–16

    Google Scholar 

  3. Bayati S, Shams-Bakhsh M, Moieni A (2011) Elimination of Grapevine Virus A (GVA) by cryotherapy and electrotherapy. J Agric Sci Technol 13:443–450

    Google Scholar 

  4. Ben-Amar A, Daldoul S, Allel D, Reustle G, Mliki A (2013) Reliable encapsulation-based cryopreservation protocol for safe storage and recovery of grapevine embryogenic cell cultures. Sci Hortic 157:32–38

    Article  CAS  Google Scholar 

  5. Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31(2):175–185. doi:10.1016/j.biotechadv.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  6. Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  7. Bernard F, Shaker-Bazarnov H, Kaviani B (2002) Effects of salicylic acid on cold preservation and cryopreservation of encapsulated embryonic axes of Persian lilac (Melia azedarach L.). Euphytica 123(1):85–88. doi:10.1023/A:1014416817303

    Article  CAS  Google Scholar 

  8. Cao SF, Hu ZC, Wang HO (2009) Effect of salicylic acid on the activities of anti-oxidant enzymes and phenylalanine ammonia-lyase in cucumber fruit in relation to chilling injury. J Hortic Sci Biotech 84:125–130

    CAS  Google Scholar 

  9. Carimi F, Pathirana R, Carra A (2011) Biotechnologies for germplasm management and improvement. In: Szabo PV, Shojania J (eds) Grapevines—varieties, cultivation and management. Nova Science Publishers, New York, pp 199–249

    Google Scholar 

  10. Chen S, Liu Z, Cui J, Ding J, Xia X, Liu D, Yu J (2011) Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regul 65(1):101–108. doi:10.1007/s10725-011-9579-9

    Article  CAS  Google Scholar 

  11. Dong C-J, Li L, Shang Q-M, Liu X-Y, Zhang Z-G (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687–700. doi:10.1007/s00425-014-2115-1

    Article  CAS  PubMed  Google Scholar 

  12. Dussert S, Mauro MC, Deloire A, Hamon A, Engelmann F (1991) Cryopreservation of grape embryogenic suspensions. 1. Influence of pretreatment, freezing and thawing conditions. Cryoletters 12:287–298

    Google Scholar 

  13. Dussert S, Engelmann F, Noirot M (2003) Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. Cryoletters 24(3):149–160

    PubMed  Google Scholar 

  14. Fan H, Wei J, Li T, Li Z, Guo N, Cai Y, Lin Y (2013) DNA methylation alterations of upland cotton (Gossypium hirsutum) in response to cold stress. Acta Physiol Plant 35(8):2445–2453. doi:10.1007/s11738-013-1278-x

    Article  CAS  Google Scholar 

  15. Fennell A, Line MJ (2001) Identifying differential tissue response in grape (Vitis riparia) during induction of endodormancy using nuclear magnetic resonance imaging. J Am Soc Hortic Sci 126(6):681–688

    Google Scholar 

  16. Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR (1998) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123(3):365–370

    Google Scholar 

  17. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  18. Ganino T, Silvanini A, Beghe D, Benelli C, Lambardi M, Fabbri A (2012) Anatomy and osmotic potential of the Vitis rootstock shoot tips recalcitrant to cryopreservation. Biol Plant 56(1):78–82

    Article  Google Scholar 

  19. Goebel-Tourand I, Mauro M, Sossountzov L, Miginiac E, Deloire A (1993) Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and Zeatin in stimulating plantlet development. Plant Cell Tissue Organ Cult 33:91–103

    Article  CAS  Google Scholar 

  20. Gonzalez-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development of large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tissue Organ Cult 92:1–13

    Article  Google Scholar 

  21. Gonzalez-Benito ME, Martin C, Vidal JR (2009) Cryopreservation of embryogenic cell suspensions of the Spanish grapevine cultivars ‘Albarino’ and ‘Tempranillo’. Vitis 48:131–136

    Google Scholar 

  22. Häggman H, Uosukainen M (2010) Plant cryopreservation in Finland—towards cryobanking. Cryoletters 31(1):83

    Google Scholar 

  23. Höfer M (2015) Cryopreservation of winter-dormant apple buds: establishment of a duplicate collection of Malus germplasm. Plant Cell Tissue Organ Cult 121(3):647–656. doi:10.1007/s11240-015-0735-1

    Article  Google Scholar 

  24. Johnston JW, Harding K, Benson EE (2007) Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci 172(3):524–534

    Article  CAS  Google Scholar 

  25. Kalcsits L, Kendall E, Silim S, Tanino K (2009) Magnetic resonance microimaging indicates water diffusion correlates with dormancy induction in cultured hybrid poplar (Populus spp.) buds. Tree Physiol 29(10):1269–1277. doi:10.1093/treephys/tpp062

    Article  PubMed  Google Scholar 

  26. Kaniuga Z, Sączyńska V, Miśkiewicz E, Garstka M (1999) Changes in fatty acids of leaf polar lipids during chilling and post-chilling rewarming of Zea mays genotypes differing in response to chilling. Acta Physiol Plant 21(3):231–241. doi:10.1007/s11738-999-0037-5

    Article  CAS  Google Scholar 

  27. Keller ERJ (2007) Cryopreservation for maintenance of plant germplasm in Germany. Adv Hortic Sci 21(4):228–231

    Google Scholar 

  28. Keller ERJ, Kaczmarczyk A, Senula A (2008) Cryopreservation for plant genebanks—a matter between high expectations and cautious reservation. Cryoletters 29(1):53–62

    Google Scholar 

  29. Kim H-H, Popova E, Shin D-J, Yi J-Y, Kim CH, Lee J-S, Yoon M-K, Engelmann F (2012) Cryobanking of Korean Allium germplasm collections: results from a 10 year experience. Cryoletters 33(1):45–57

    CAS  PubMed  Google Scholar 

  30. Lambardi M, Benelli C, De Carlo A, Ozudogru EA, Previati A, Ellis D (2011) Cryopreservation of ancient apple cultivars of Veneto: a comparison between PVS2-vitrification and dormant-bud techniques. Acta Hortic 908:191–198

    Article  CAS  Google Scholar 

  31. Li Y, Liu C, Li T, Wang C, Xiao Y, Zhang L, Jin D, Zhao Y, Wang Z, Cao J, Hao L (2011) Regulatory role of exogenous salicylic acid in the response of Zoysia japonica plants to freezing temperatures: a comparison with cold-acclimatisation. J Hortic Sci Biotechnol 86:277–283

    CAS  Google Scholar 

  32. Lynch PT, Siddika A, Johnston JW, Trigwell SM, Mehra A, Benelli C, Lambardi M, Benson EE (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181(1):47–56. doi:10.1016/j.plantsci.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  33. Marković Z, Chatelet P, Sylvestre I, Kontic JK, Engelmann F (2013) Cryopreservation of grapevine (Vitis vinifera L.) in vitro shoot tips. Cent Eur. J Biol 8(10):993–1000. doi:10.2478/s11535-013-0223-8

    Google Scholar 

  34. Marković Z, Chatelet P, Preiner D, Sylvestre I, Konti KJ, Engelmann F (2014) Effect of shooting medium and source of material on grapevine (Vitis vinifera L.) shoot tip recovery after cryopreservation. Cryoletters 35:40–47

    PubMed  Google Scholar 

  35. Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA 111:6092–6097

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  36. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  37. Mutlu S, Karadagoglu O, Atici O, Nalbantoglu B (2013) Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol Plant 57(3):507–513. doi:10.1007/s10535-013-0322-4

    Article  CAS  Google Scholar 

  38. NBPGR (2015) Tissue culture and cryopreservation unit. http://www.nbpgr.ernet.in/Divisions_and_Units/Tissue_Culture_Cryo.aspx. Accessed 20 May 2015

  39. Nukari A, Uosukainen M, Rokka V-M, Antonius K, Wang Q, Valkonen JPT (2009) Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland. Agric Food Sci 18(2):117–128

    Article  Google Scholar 

  40. Panis B, Garming H, Piette B, Roux N, Swennen R, Van den Houwe I (2010) Banana conservation activities in the Bioversity International Transit Centre (ITC), Belgium. Cryoletters 31(1):76–94

    Google Scholar 

  41. Panis B, Piette B, André E, Van den Houwe I, Swennen R (2011) Droplet vitrification: the first generic cryopreservation protocol for organized plant tissues? Acta Hortic 908:157–163

    Article  Google Scholar 

  42. Pathirana R, McKenzie MJ (2005) Early detection of grapevine leafroll virus in Vitis vinifera using in vitro micrografting. Plant Cell Tissue Organ Cult 81(1):11–18. doi:10.1007/s11240-004-2498-y

    Article  Google Scholar 

  43. Pires AM, Amado C (2008) Interval estimators for a binomial proportion: comparison of twenty methods. REVSTAT–Stat J 6:165–197

  44. Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. Cryoletters 22:97–104

    CAS  PubMed  Google Scholar 

  45. Repka V (2001) Elicitor-stimulated induction of defense mechanisms and defense gene activation in grapevine cell suspension cultures. Biol Plant 44(4):555–565

    Article  CAS  Google Scholar 

  46. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9(1):30–33. doi:10.1007/BF00232130

    Article  CAS  PubMed  Google Scholar 

  47. Sayyari M (2012) Improving chilling resistance of cucumber seedlings by salicylic acid. Am Eurasian J Agric Environ Sci 12(2):204–209

    CAS  Google Scholar 

  48. Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  49. Shatnawi M, Anfoka G, Shibli R, Al-Mazra’awi M, Shahrour W, Arebiat A (2011) Clonal propagation and cryogenic storage of virus-free grapevine (Vitis vinifera L.) via meristem culture. Turk J Agric For 35(2):173–184. doi:10.3906/tar-0912-519

  50. Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  51. Taşgın E, Atıcı Ö, Nalbantoğlu B, Popova LP (2006) Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67(7):710–715. doi:10.1016/j.phytochem.2006.01.022

    Article  PubMed  Google Scholar 

  52. Vasanth K, Vivier MA (2011) Improved cryopreservation procedure for long term storage of synchronised culture of grapevine. Biol Plant 55(2):365–369

    Article  CAS  Google Scholar 

  53. Wang Q, Tanne E, Amir A, Gafny R (2000) Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tissue Organ Cult 63(1):41–46

    Article  CAS  Google Scholar 

  54. Wang QC, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of Grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165(2):321–327

    Article  CAS  Google Scholar 

  55. Wang QC, Mawassi M, Sahar N, Li P, Violeta CT, Gafny R, Sela I, Tanne E, Perl A (2004) Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspensions by encapsulation-vitrification. Plant Cell Tissue Organ Cult 77:267–275

    Article  CAS  Google Scholar 

  56. Wang QC, Panis B, Engelmann F, Lambardi M, Valkonen JPT (2009a) Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol 154(3):351–363

    Article  Google Scholar 

  57. Wang Y, Yang ZM, Zhang QF, Li JL (2009b) Enhanced chilling tolerance in Zoysia matrella by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine. Biol Plant 53(1):179–182. doi:10.1007/s10535-009-0030-2

    Article  CAS  Google Scholar 

  58. Yin Z-F, Bi W-L, Chen L, Zhao B, Volk GM, Wang Q-C (2014) An efficient, widely applicable cryopreservation of Lilium shoot tips by droplet vitrification. Acta Physiol Plant 36(7):1683–1692. doi:10.1007/s11738-014-1543-7

    Article  CAS  Google Scholar 

  59. Zamecnik J, Faltus M, Bilavcik A (2007) Cryoprotocols used for cryopreservation of vegetatively propagated plants in the Czech cryobank. Adv Hortic Sci 21(4):247–250

    Google Scholar 

  60. Zhao C, Wu Y, Engelmann F, Zhou M (2001) Cryopreservation of axillary buds of grape (Vitis vinifera) in vitro plantlets. Cryoletters 22(5):321–328

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NZ Winegrowers (NZW 10-107—“Cryopreserved grapevine: a new way to maintain high-health germplasm and cultivar imports with less rigorous quarantine”). This work was part of COST Action 871, CRYOPLANET (Cryopreservation of Crop Species in Europe) approved and funded by European Science Foundation. Travel associated with this work was funded by the Royal Society of New Zealand and COST Action 871. The authors wish to thank Edwige André, Sriya Pathirana and Andrew Mullan for their technical assistance. Tony Baker and John Meyer supplied grapevine material.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjith Pathirana.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests.

Additional information

Communicated by M. Capuana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pathirana, R., McLachlan, A., Hedderley, D. et al. Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification. Acta Physiol Plant 38, 12 (2016). https://doi.org/10.1007/s11738-015-2026-1

Download citation

Keywords

  • Abiotic stress
  • Conservation
  • Dehydration
  • Germplasm
  • In vitro culture
  • Sucrose