Acta Physiologiae Plantarum

, 37:245 | Cite as

Modifications of cell wall pectin in tomato cell suspension in response to cadmium and zinc

  • Aurélie Muschitz
  • Catherine Riou
  • Jean-Claude Mollet
  • Vincent Gloaguen
  • Céline Faugeron
Original Article


Retention of metal cations by the cell wall is a common process found in plants in response to stress induced by the presence of trace metals (TMs). In this study conducted on a tomato cell suspension culture, cadmium (Cd) and zinc (Zn) were added to the medium at maximal concentrations of 0.5 and 2 mM, respectively. We showed that around 50 % of Zn or Cd was confined into the cell wall of tomato cells. Besides, their accumulation in the cell wall increased with the exogenous concentration in the culture medium. Characterization of cell wall pectins showed a decrease in the highly methylesterified pectin fraction whereas the weakly methylesterified pectin remained stable in response to Cd. Moreover, a significant increase in the degree of methylesterification was observed in both fractions. This was probably associated to the reduced pectin methylesterase (PME) activity in the treated cells. Furthermore, linked to a reduction of pectin content we showed a reduced expression of the galacturonosyltransferase QUA1 gene whereas PME1 expression remained unchanged. Taking together, these data strongly suggest that pectin biosynthesis and its modification in the cell wall are strongly regulated in response to TM exposure in tomato cells.


Trace elements Cell wall Pectins Tomato (Solanum lycopersicum L.) 



Dry cell wall


Degree of methylesterification




Highly methylesterified


Oxalate extract


Pectin methylesterase


Trace metal


Uronic acid


Water extract


Weakly methylesterified pectins



A.M. was supported by a post-doctoral fellowship from the Région Limousin. The authors are grateful to Dr. Michel Guilloton for critical reading of the manuscript and to Flavien Dardelle for his help on the immuno-blots. This article is dedicated to Professor Henri Morvan.


  1. Anthon GE, Barrett DM (2008) Combined enzymatic and colorimetric method for determining the uronic acid and methylester content of pectin: application to tomato products. Food Chem 110:239–247. doi: 10.1016/j.foodchem.2008.01.042 CrossRefPubMedGoogle Scholar
  2. Appenroth KJ (2010) What are ‘‘heavy metals’’ in plant sciences? Acta Physiol Plant 32:615–619. doi: 10.1007/s11738-009-0455-4 CrossRefGoogle Scholar
  3. Astier C, Gloaguen V, Faugeron C (2014) Phytoremediation of cadmium-contaminated soils by young Douglas fir trees: effects of cadmium exposure on cell wall composition. Int J Phytorem 16:790–803. doi: 10.1080/15226514.2013.856849 CrossRefGoogle Scholar
  4. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489CrossRefPubMedGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. Braidwood L, Breuer C, Sugimoto K (2014) My body is a cage: mechanisms and modulation of plant cell growth. New Phytol 201:388–402. doi: 10.1111/nph.12473 CrossRefPubMedGoogle Scholar
  7. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. doi: 10.1111/j.1469-8137.2007.01996.x CrossRefPubMedGoogle Scholar
  8. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900. doi: 10.1016/j.carres.2009.05.021 CrossRefPubMedGoogle Scholar
  9. Cherif J, Mediouni C, Ben Ammar W, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and anti-oxidative systems in tomato plants (Solanum lycopersicum). J Env Sci 23:837–844. doi: 10.1016/S1001-0742(10)60415-9 CrossRefGoogle Scholar
  10. Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800. doi: 10.1016/S0008-6215(03)00272-6 CrossRefPubMedGoogle Scholar
  11. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719. doi: 10.1016/S1360-1385(02)02295-1 CrossRefPubMedGoogle Scholar
  12. Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98. doi: 10.1016/j.envexpbot.2011.12.028 CrossRefGoogle Scholar
  13. Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576. doi: 10.1104/pp.110.158881 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603. doi: 10.1093/jexbot/51.344.595 CrossRefPubMedGoogle Scholar
  15. Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium-induced alterations of the structural features of pectins in flax hypocotyls. Planta 225:1301–1312. doi: 10.1007/s00425-006-0425-7 CrossRefPubMedGoogle Scholar
  16. Douchiche O, Driouich A, Morvan C (2010) Spatial regulation of cell-wall structure in response to heavy metal stress: cadmium-induced alteration of the methyl-esterification pattern of homogalacturonans. Ann Bot 105:481–491. doi: 10.1093/aob/mcp306 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Douchiche O, Driouich A, Morvan C (2011) Impact of cadmium on early stages of flax fibre differentiation: ultrastructural aspects and pectic features of cell walls. Plant Physiol Biochem 49:592–599. doi: 10.1016/j.plaphy.2011.03.008 CrossRefPubMedGoogle Scholar
  18. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  19. Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC (2014) The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implication of a putative sialyltransferase-like protein. Ann Bot 114:1177–1188. doi: 10.1093/aob/mcu093 PubMedCentralCrossRefPubMedGoogle Scholar
  20. El-Moneim DA, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C (2014) Pectin methylesterase gene and aluminum tolerance in Secale cereale. Env Exp Bot 107:125–133. doi: 10.1016/j.envexpbot.2014.06.006 CrossRefGoogle Scholar
  21. Fernández R, Fernández-Fuego D, Bertrand A, González A (2014) Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids. Plant Physiol Biochem 78:63–70. doi: 10.1016/j.plaphy.2014.02.021 CrossRefPubMedGoogle Scholar
  22. Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141. doi: 10.1007/s00709-010-0158-0 CrossRefPubMedGoogle Scholar
  23. Gribaa A, Dardelle F, Lehner A, Rihouey C, Burel C, Ferchichi A, Driouich A, Mollet JC (2013) Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera ‘Degletnour’, Arecales) fruit during development. Plant, Cell Environ 36:1056–1070. doi: 10.1111/pce.12042 CrossRefGoogle Scholar
  24. Gupta B, Pathak GC, Pandey N (2011) Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress. Russian J Plant Physiol 58:85–91. doi: 10.1134/S102144371101007 CrossRefGoogle Scholar
  25. Han Y, Sa G, Sun J, Shen Z, Zhao R, Ding M, Deng S, Lu Y, Zhang Y, Shen X, Chen S (2014) Overexpression of Populus euphratica xyloglucanendotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environ Exp Bot 100:74–83. doi: 10.1016/j.envexpbot.2013.12.021 CrossRefGoogle Scholar
  26. Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395. doi: 10.1104/pp.110.156588 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Inouhe M, Mitsumune M, Tohoyama H, Joho M, Muruyama T (1991) Contributions of cell wall and metal binding peptide to Cd- and Cu-tolerances in suspension-cultures cells of tomato. Bot Mag 104:217–229CrossRefGoogle Scholar
  28. Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1-4)-β-D-galactan. Plant Physiol 113:1405–1412PubMedCentralPubMedGoogle Scholar
  29. Kamerling JP, Gerwig G, Vliegenthart JF, Clamp JR (1975) Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. Biochem J 151:491–495PubMedCentralCrossRefPubMedGoogle Scholar
  30. Klavons JA, Bennett RD (1986) Determination of methanol using alcohol oxidase and its application to methylester content of pectins. J Agric Food Chem 34:597–599CrossRefGoogle Scholar
  31. Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygopodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931. doi: 10.1093/jxb/eri187 CrossRefPubMedGoogle Scholar
  32. Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51. doi: 10.1007/s11738-010-0581-z CrossRefGoogle Scholar
  33. Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166. doi: 10.3390/plants4010112 CrossRefGoogle Scholar
  34. Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182. doi: 10.1093/jxb/eri314 CrossRefPubMedGoogle Scholar
  35. Leucci MR, Lenucci MS, Piro G, Dalessandro G (2008) Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol 165:1168–1180. doi: 10.1016/j.jplph.2007.09.006 CrossRefPubMedGoogle Scholar
  36. Liu J, Ma J, He C, Li X, Zhang W, Xu F, Lin Y, Wang L (2013) Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon. New Phytol 200:691–699. doi: 10.1111/nph.12494 CrossRefPubMedGoogle Scholar
  37. Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562. doi: 10.1016/j.pbi.2011.07.004 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Meychik N, Nikolaeva Y, Kushunina M, Yermakov I (2014) Are the carboxyl groups of pectin polymers the only metal binding sites in plant cell walls? Plant Soil 381:25–34. doi: 10.1007/s11104-014-2111-z CrossRefGoogle Scholar
  39. Meyer CL, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure MP, Goormaghtigh E, Verbruggen N (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66:3215–3227. doi: 10.1093/jxb/erv144 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419. doi: 10.1016/S1360-1385(01)02045-3 CrossRefPubMedGoogle Scholar
  41. Montreuil J, Bouquelet S, Debray H, Fournet B, Spik G, Strecker G (1986) Glycoproteins. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis: a practical approach. IRL Press, Oxford (UK), pp 143–204Google Scholar
  42. Muschitz A, Faugeron C, Morvan H (2009) Response of cultured tomato cells subjected to excess zinc: role of cell wall in zinc compartmentation. Acta Physiol Plant 31:1197–1204. doi: 10.1007/s11738-009-0354-8 CrossRefGoogle Scholar
  43. O’Neill MA, York WS (2003) The composition and structures of plant primary cell walls. In: Rose JKC (ed) Annual plant reviews. The plant cell wall. CRC Press, Boca Raton, vol 8, pp 1–54Google Scholar
  44. Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman J-F (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133. doi: 10.3389/fpls.2015.00133 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Paynel F, Schaumann A, Arkoun M, Douchiche O, Morvan C (2009) Temporal regulation of cell-wall pectin methylesterase and peroxidase isoforms in cadmium-treated flax hypocotyls. Ann Bot 104:1363–1372. doi: 10.1093/aob/mcp254 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277. doi: 10.1016/j.tplants.2007.04.001 CrossRefPubMedGoogle Scholar
  47. Reca IB, Lionetti V, Camardella L, D’Avino R, Giardina T, Cervone F, Bellincampi D (2012) A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. Plant Mol Biol 79:429–442. doi: 10.1007/s11103-012-9921-2 CrossRefPubMedGoogle Scholar
  48. Ridley BL, O’Neill MA, Mohnen D (2001) Pectin: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967. doi: 10.1016/S0031-9422(01)00113-3 CrossRefPubMedGoogle Scholar
  49. Sanitá Di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi: 10.1016/S0098-8472(98)00058-6 CrossRefGoogle Scholar
  50. Sénéchal F, Wattier C, Rustérucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5160. doi: 10.1093/jxb/eru272 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Sousa AI, Caçador I, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857. doi: 10.1016/j.chemosphere.2007.07.012 CrossRefPubMedGoogle Scholar
  52. Sun J, Cui J, Luo C, Gao L, Chen Y, Shen Z (2013) Contribution of cell walls, nonproteinthiols, and organic acids to cadmium resistance in two cabbage varieties. Arch Environ Contam Toxicol 64:243–252. doi: 10.1007/s00244-012-9824-x CrossRefPubMedGoogle Scholar
  53. Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–216. doi: 10.1007/s11240-006-9192-1 CrossRefGoogle Scholar
  54. Wang X, Liu Y, Zeng G, Chai L, Song X, Min Z, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Bot 62:389–395. doi: 10.1016/j.envexpbot.2007.10.014 CrossRefGoogle Scholar
  55. Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectins: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27. doi: 10.1023/A:1010662911148 CrossRefPubMedGoogle Scholar
  56. Xu W, Shi W, Yan F, Zhang B, Liang J (2011) Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aqua Bot 94:37–43. doi: 10.1016/j.aquabot.2010.11.002 CrossRefGoogle Scholar
  57. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179. doi: 10.1016/j.sajb.2014.07.012 CrossRefGoogle Scholar
  58. Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403. doi: 10.1016/j.jhazmat.2013.09.018 CrossRefPubMedGoogle Scholar
  59. Zhu XF, Sun Y, Zhang BC, Mansoori N, Wan JX, Liu Y, Wang ZW, Shi YZ, Zhou YH, Zheng SJ (2014) TRICHOME BIREFRINGENCE-LIKE27affects Aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis. Plant Physiol 66:181–189. doi: 10.1104/pp.114.243808 CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2015

Authors and Affiliations

  • Aurélie Muschitz
    • 1
  • Catherine Riou
    • 1
  • Jean-Claude Mollet
    • 2
  • Vincent Gloaguen
    • 1
  • Céline Faugeron
    • 1
  1. 1.Laboratoire de Chimie des Substances NaturellesUniversité de Limoges, Faculté des Sciences et TechniquesLimoges CedexFrance
  2. 2.Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA4358Normandie Université, IRIB, VASIMont-Saint-AignanFrance

Personalised recommendations