Skip to main content
Log in

A study on biosynthesis of “citral” in lemongrass (C. flexuosus) cv. Suvarna

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript


Incorporation of [1-13C]-glucose and fosmidomycin was achieved in young and rapidly expanding (aged 15 days) leaves of lemongrass (C. flexuosus) cv. suvarna to elucidate biosynthetic origin of citral (3,7-dimethyl-2,6-octadienal). Analyses of the resultant 13C-labeling patterns of citral by quantitative 13C-NMR spectroscopy revealed significant %13C enrichment at carbons C-3, C-5, C-7 and C-9 in citral. This labeling pattern of the citral is in accordance with their biosynthesis via 2C-methyl-d-erythritol-4-phosphate (MEP) pathway. However, incorporation of [1-13C]-glucose achieved in the presence of fosmidomycin resulted in a 13C-labeling pattern of citral which did not match with labeling pattern characteristic of the MEP pathway. In addition, we studied the activity pattern of the DXR enzyme following fosmidomycin (25, 50, 75 and 100 μM concentrations) treatment of the young (aged 15 days) leaves for 48 h. The results revealed that fosmidomycin (100 μM) caused drastic inhibition (>50 %) of the DXR enzyme activity. The levels of the citral measured in the fosmidomycin treated leaves were also found to be reduced with decrease the activity of DXR enzyme. In conclusion, the results of the present work revealed the presence of the MEP pathway and its role in the biosynthesis of citral in lemongrass. In addition, the critical role of the DXR enzyme in the citral biosynthesis is highlighted. This is the first report on elucidation of the MEP pathway in lemongrass and may help in deeper understanding of the monoterpene biosynthesis and regulation in the genus Cymbopogon of high industrial significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  • Akhila A (1986) Biosynthesis of monoterpenes in Cymbopogon winterianus. Phytochemistry 25:421–424

    Article  CAS  Google Scholar 

  • Bach T, Weber T, Motel A (1990) Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA in plants. In: Towers GHN, Stafford H (eds) Biochemistry of the mevalonic acid pathway to terpnoids, recent advances in phytochemistry, vol 24. Springer, USA, pp 1–82

    Chapter  Google Scholar 

  • Barlow AJ, Becker H, Adam KP (2001) Biosynthesis of the hemi-and monoterpene moieties of isoprenyl phenyl ethers from the liverwort Trichocolea tomentella. Phytochemistry 57:7–14

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitative determination of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Dawson FA (1995) The amazing terpenes. Naval Stores Review, 6–12

  • Dubey VS, Luthra R (2001) Biotransformation of geranyl acetate to geraniol during palmarosa (Cymbopogon martini Roxb. Wats var. motia) inflorescence development. Phytochemistry 57:675–680

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Silvia S, Meinhart H, Adelbert B (1997) Monoterpenoid essential oils are not of mevalonoid origion. Tetrahedron Lett 38:3889–3892

    Article  CAS  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:221–233

    Article  Google Scholar 

  • Eisenreich W, Bachera A, Arigoni D, Rohdicha F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  CAS  PubMed  Google Scholar 

  • Fellermeier M, Kis K, Sagner S, Maier U, Bacher A, Zenk MH (1999) Cell-free conversion of 1-deoxy-d-xylulose 5-phosphate and 2-C-methyl-d-erythritol 4-phosphate into β-carotene in higher plants and its inhibition by fosmidomycin. Tetrahedron Lett 40:2743–2746

    Article  CAS  Google Scholar 

  • Ganjewala D (2002) Biochemical and molecular characterization of geraniol rich lemongrass (Cymbopogon flexusosus nees ex. Steud) wats mutant cv. GRL-1. Thesis

  • Ganjewala D, Luthra R (2007a) Essential oil biosynthesis and metabolism of geranyl acetate and geraniol in developing Cymbopogon flexuosus (Nees ex. Steud) Wats mutant cv. GRL-1 leaf. Am J Plant Physiol 2:269–275

    Article  CAS  Google Scholar 

  • Ganjewala D, Luthra R (2007b) Inhibitors of essential oil biosynthesis in Cymbopogon flexuosus (Nees ex. Steud) Wats mutant cv. GRL-1 leaves. Am J Plant Physiol 2:227–232

    Article  CAS  Google Scholar 

  • Ganjewala D, Luthra R (2009) Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass Cymbopogon flexuosus (Nees ex. Steud) Wats. mutant cv. GRL-1 leaves. Z Naturforsch C 64:251–259

    Article  CAS  PubMed  Google Scholar 

  • Ganjewala D, Kumari A, Khan KH (2008) Ontogenic and developmental changes in essential oil content and compositions in Cymbopogon flexuosus cultivars. Recent Advance in Biotechnology, pp 82–92

  • Ganjewala D, Kumar S, Luthra R (2009) An account of cloned genes of methyl-erythritol-4-phosphate pathway of isoprenoids biosynthesis in plants. Curr Issues Mol Biol S1:35–45

    Google Scholar 

  • Guenther E (1950) The essential oils, vol 4. Van Nostrand Company Inc, New York, pp 20–25

    Google Scholar 

  • Hemmerlin A, Hoeffer JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2-cells. J Biol Chem 278:26666–26676

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Circ Calif Agric Expt Stat 347:32

    Google Scholar 

  • Husain A (1994) Palmarosa. Essential oil plants and their cultivation. Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, pp 58–66

    Google Scholar 

  • Iijima Y, Gang DR, Ridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irie K, Nakagawa Y, Tomimatsu S, Ohigashi H (1998) Biosynthesis of the monoterpenoid moiety of teleocidins via the non-mevalonate pathway in Streptomyces. Tetrahedron Lett 39:7929–7930

    Article  CAS  Google Scholar 

  • Ito M, Honda G (2007) Geraniol synthases from Perilla and their taxonomical significance. Phytochemistry 68:446–453

    Article  CAS  PubMed  Google Scholar 

  • Khanuja SPS, Shasany AK, Pawar A, Lal RK, Darokar MP, Naqvi AA, Rajkumar S, Sundaresan V, Lal N, Kumar S (2005) Essential oil constituents and RAPD markers to establish species relationship in Cymbopogon Spreng. (Poaceae). Biochem Sys Ecol 33:171–186

    Article  CAS  Google Scholar 

  • Knoss W, Reuter B, Zapp J (1997) Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via anon-mevalonate pathway. Biochem J 326:449–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lees TM, deMuria PS (1962) A simple method for preparation of TLC plates. J Chromat 8:108–109

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Pinelli P, Brancaleoni E, Ciccioli P (2004) 13C labeling reveals chloroplastic and extra chloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation. Plant Physiol 135:1903–1907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luthra R, Sangwan RS, Sangwan NS (1993) Utilization of exogenously supplied primary precursors for essential oil synthesis in Cymbopogon species. Biol Plant 35:473–476

    Article  CAS  Google Scholar 

  • Luthra R, Luthra PM, Kumar S (1999) Redefined role of mevalonate-isoprenoid pathway in terpenoid biosynthesis in higher plants. Curr Sci 76:133–135

    CAS  Google Scholar 

  • Mccaskill D, Croteau R (1998) Some caveats for bioengineering terpenoid metabolism. Trends Biotechnol 16:349–355

    Article  CAS  Google Scholar 

  • Perez LM, Taucher G, Cori O (1980) Hydrolysis of allylic phosphates by enzymes from flavedo of Citrus sinensis. Phytochemistry 19:183–187

    Article  CAS  Google Scholar 

  • Ramak P, Osaloo SK, Ebrahimzadeh H, Sharifi M, Behmanesh M (2013) Inhibition of the mevalonate pathway enhances carvacrol biosynthesis and DXR gene expression in shoot cultures of Satureja khuzistanica Jamzad. J Plant Physiol 170:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Natl Prod Rep 16:565–574

    Article  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sangwan RS, Sangwan NS, Luthra R (1993) Metabolism of acyclic monoterpenes: partial purification and properties of geraniol dehydrogenase from lemongrass (Cymbopogon flexuosus). J Plant Physiol 142:129–134

    Article  CAS  Google Scholar 

  • Singh N, Luthra R, Sangwan RS (1989) Effect of leaf position and age on the essential quantity and quality in lemongrass (Cymbopogon flexusosus Stapf.). Planta Med 55:254–256

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Luthra R, Sangwan RS (1990) Oxidative pathways and essential oil biosynthesis in the developing lemongrass (Cymbopogon flexuosus Stapf). Plant Physiol Biochem 28:703–710

    CAS  Google Scholar 

  • Yang T, Wang HX, Zeng Y (2005) A geraniol synthase gene from Cinnamomum tenuipilum. Phytochemistry 66:285–293

    Article  CAS  PubMed  Google Scholar 

  • Zeidler JG, Schwender J, Muller C, Wiesner J, Weidemeyer C, Beck E, Jomaa H Lichtenthaler HK (1998) Inhibition of the non-mevalonate 1-deoxy-d-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z. Naturforsch 53c:980–986

  • Zhao S, Wang L, Liu L, Liang Y, Yao S, Wu J (2013) Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33:393–400

    Article  PubMed  Google Scholar 

Download references


The corresponding author of the manuscript would like to thank Council of Scientific and Industrial Research (CSIR), New Delhi, Government of India for providing financial support (Grant No. 1235/EMR-II/2010) for our ongoing research program on monoterpene biosynthesis and regulation in the genus Cymbopogon. I duly acknowledge technical support from AIRF, JNU, New Delhi, India. Finally, I would like to thank founder Dr. Ashok K Chauhan and Chancellor Mr. Atul Chauhan Amity University Uttar Pradesh, Noida, India for providing necessary support and facilities.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Deepak Ganjewala.

Additional information

Communicated by J. V. J.-Novo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Ganjewala, D. A study on biosynthesis of “citral” in lemongrass (C. flexuosus) cv. Suvarna. Acta Physiol Plant 37, 240 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: