Skip to main content
Log in

Stress-induced changes to the flora in a geothermal field in central Italy

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The vegetation profile and the photosynthetic efficiency, oxidative damage, and stomatal conductance in the evergreen dwarf shrub Calluna vulgaris (L.). Hull was analyzed in a Mediterranean ecosystem characterized by intense geothermal activity. Among the higher plants present in the area, this species appears to be the sole to possess the ability to grow near the geothermal sources. The hot fluid springs strongly alter the environment in their proximity: the emitted water vapor, CO2, H2S, CH4, H3BO3, SO4 2−, and NH4 + partly condensate and precipitate to the soil, thus leading to its extreme acidification and nutrient depletion. Furthermore, the temperature starts to rise sharply just a few centimeters under the soil surface. Under this multiple stress, the individuals of C. vulgaris growing within a few meters from the springs showed lower photosystem II efficiency, higher oxidative damage to the biomembranes, and lower stomatal conductance than the individuals growing farther away. Drought and high air temperatures occurring in summer exacerbate these harsh conditions, but only the plants closer to the springs did undergo an acute, yet transient crisis, as shown by the analyzed parameters. These results suggest that the main factors of stress are related to the physical and chemical features of the soil, while the adverse climate conditions apparently are of secondary importance. The possible role of reduced stomatal conductivity in enhancing the resistance of C. vulgaris to this hostile environment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H (2011) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168:1560–1561

    Article  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbation of photosynthesis. Physiol Plant 81:563–570

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bargagli-Petrucci G (1916) Studii sulla Flora Microscopica della Regione Boracifera Toscana. Nuovo Giornale Botanico Italiano 23:171–184

    Google Scholar 

  • Bartoli G, Bottega S, Forino LMC, Ruffini Castiglione M, Tagliasacchi AM, Grilli I, Spanò C (2013) Morpho-physiological plasticity contributes to tolerance of Calluna vulgaris in an active geothermal field. Aust J Bot 61:107–118

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bolhàr-Nordenkampf HR, Öquist G (1993) Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual, Chapman & Hall, London, pp 193–206

  • Burns B (1997) Vegetation change along a geothermal stress gradient at Te Kopia steamfield. J R Soc New Zeal 27:279–294

    Article  Google Scholar 

  • Bussotti F, Tognelli R, Montagni G, Borghini F, Bruschi P, Tani C (2003) Response of Quercus pubescens leaves exposed to geothermal pollutant input in southern Tuscany (Italy). Environ Pollut 121:349–361

    Article  CAS  PubMed  Google Scholar 

  • Chiarucci A, Calderisi M, Casini F, Bonini I (2008) Vegetation at the limits for vegetation: vascular plants, bryophytes and lichens in a geothermal field. Folia Geobot 43:19–33

    Article  Google Scholar 

  • De Martonne E (1926) L’indice d’ariditè. Bulletin de l’Association des Geographes Francais 9:3–5

    Article  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe T (1981) Leaf senescence: correlated with increase leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Duchi V, Manganelli M, Minissale A (1991) Composizione chimica delle fasi fluide naturali superficiali del campo geotermico di Larderello. Boll Soc Geol Ital 110:41–46

    Google Scholar 

  • Figueroa ME, Fernández-Baco L, Luque T, Davy AJ (1997) Chlorophyll fluorescence, stress and survival in populations of Mediterranean grassland species. J Veg Sci 8:881–888

    Article  Google Scholar 

  • Fiori A (1920) Rilievi geografici e forestali sulla flora del bacino della Cecina e località finitime. Annuario Reale dell’Istituto Superiore Forestale Nazionale di Firenze 5:151–186

    Google Scholar 

  • Gimingham GH (1960) Biological flora of the British isles. Calluna vulgaris (L.) Hull. A monotypic genus. J Ecol 48:455–471

    Article  Google Scholar 

  • Glime JM, Iwatsuki Z (1994) Geothermal communities of Ponponyama, Hokkaido. J Hattori Bot Lab 75:133–147

    Google Scholar 

  • Greenwood NN, Earnshaw A (1985) Chemistry of the Elements. Pergamon Press, Oxford

    Google Scholar 

  • Haynes RJ, Swift RS (1986) Effects of soil acidification and subsequent leaching on levels of extractable nutrients in a soil. Plant Soil 95:237–336

    Article  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Huang B, Liu X, Xu Q (2001) Supraoptimal soil temperatures induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance. Crop Sci 41:430–435

    Article  CAS  Google Scholar 

  • Hughes LL (2002) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Lichtenthaler HK (1988) In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Kluwer Academic Publishers, Dordrecht, pp 129–142

    Chapter  Google Scholar 

  • Liu X, Huang B (2005) Root physiological factors involved in cool-season grass response to high soil temperature. Environ Exp Bot 53:233–245

    Article  Google Scholar 

  • Llorens L, Peñuelas J, Beier C, Emmett B, Estiarte M, Tietema A (2004) Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems 4:613–624

    Google Scholar 

  • Lyons EM, Pote J, DaCosta M, Huang B (2007) Whole-plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses. Environ Exp Bot 59:307–313

    Article  CAS  Google Scholar 

  • Marschner H (1991) Mechanism of adaptation of plant to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Mishra RK, Singhal GS (1992) Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids. Plant Physiol 98:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pais I, Jones JB (1997) The handbook of trace elements. St. Lucie Press, Boca Raton

    Google Scholar 

  • Peñuelas J, Filella I, Tognetti R (2001) Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Glob Change Biol 7:291–301

    Article  Google Scholar 

  • Selvi F, Bettarini I (1999) Geothermal biotopes in central-western Italy from a botanical view point. In: Raschi A, Vaccari F, Miglietta F (eds) Ecosystem response to CO2: the MAPLE project results. The European Commission, Research Directorate, Brussels, pp 1–12

    Google Scholar 

  • Singh A, Agrawal M (2008) Acid rain and its ecological consequences. J Environ Biol 29:15–24

    CAS  PubMed  Google Scholar 

  • Snee RD (1973) Some aspects of nonorthogonal data analysis, Part I. Developing prediction equations. J Qual Technol 5:67–79

    Google Scholar 

  • Soil Survey Division Staff (1993) Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18

  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146:59–74

    Article  Google Scholar 

  • Tomei PE, Focardi D, Kugler PC, Maggini A, Palazzo D, Pippucci A, Trimarchi S, Vatti M (2008) Approfondimenti conoscitivi su alcune aree di interesse ambientale del Piano Territoriale di Coordinamento,Flora e Vegetazione. Convenzione tra la provincia di Pisa e il dipartimento di Biologia dell’Università di Pisa. Provincia di Pisa, Pisa

  • Violante P (2002) Chimica del suolo e della nutrizione delle piante. Edagricole, Bologna

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesank A, Beebee TJC, Fromentin JM, Hoegh-Guldberg IO, Bairlein F (2002) Ecological responses to recent climate change, Review Article. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Pote J, Huang B (2003) Responses of cytokinins, antioxidant enzymes, and lipid peroxidation in shoots of creeping bentgrass to high root-zone temperatures. J Am Soc Hortic Sci 128:648–655

    CAS  Google Scholar 

  • Xu Q, Huang B (2000) Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci 40:1363–1368

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Municipality of Monterotondo Marittimo (Grosseto, Italy) for having granted permission for the research in ‘Biancane’ Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sorce.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. J. Reigosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pippucci, A., Lorenzi, R., Spanò, C. et al. Stress-induced changes to the flora in a geothermal field in central Italy. Acta Physiol Plant 37, 198 (2015). https://doi.org/10.1007/s11738-015-1953-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1953-1

Keywords

Navigation