Skip to main content
Log in

Identification of six mitogen-activated protein kinase (MAPK) genes in banana (Musa acuminata L. AAA group, cv. Cavendish) under infection of Fusarium Oxysporum f. sp cubense Tropical Race 4

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinases (MAPKs) play important roles in signal transduction pathways responding to various stresses. In this study, we described the molecular characteristics of six MAPK genes (MaMAPK1, MaMAPK2, MaMAPK3, MaMAPK4, MaMAPK5 and MaMAPK6) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these MAPKs ranged from 43.0 to 70.1 kDa and their pIs ranged from 5.67 to 9.32. At the amino acid level, they shared high sequence similarity with MAPKs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaMAPKs also had high similarity with MAPKs of other plant species. These genes were expressed in nearly all tissues using semi-quantitative RT-PCR. All of the six MaMAPKs were induced by signal molecules in banana seedlings, such as ABA, Ethephon, MeJA and SA. The gene expressions of MaMAPK1, MaMAPK2, MaMAPK3, MaMAPK5 and MaMAPK6 were induced in resistant cultivar of banana after being inoculated with Fusarium Oxysporum f specialis (f. Sp) cubense Tropical Race 4 (Foc TR4). Our results suggest that MaMAPKs play a key role in both the development of banana seedlings and banana resistance to Foc TR4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnon DI, Hoagland DR (1939) A comparison of water culture and soil as media for crop production. Science 89:512–514

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  CAS  PubMed  Google Scholar 

  • Asif MH, Lakhwani D, Pathak S et al (2013) Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening. Funct Integr Genomics 14(1):161–175

    Article  PubMed  Google Scholar 

  • Aurore G, Parfait B, Fahrasmane L (2009) Bananas, raw materials for making processed food products. Trends Food Sci Technol 20(2):78–91

    Article  CAS  Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 448:213–217

    Article  Google Scholar 

  • Dóczi R, Ökrész L, Romero AE et al (2012) Exploring the evolutionary path of plant MAPK networks. Trends Plant Sci 17(9):518–525

    Article  PubMed  Google Scholar 

  • Droillard MJ, Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 574:42–48

    Article  CAS  PubMed  Google Scholar 

  • Gomi K, Ogawa D, Katou S et al (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46(12):1902–1914

    Article  CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  CAS  PubMed  Google Scholar 

  • Hwang SC, Ko WH (2004) Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis 88:580–588

    Article  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  • Janitza P, Ullrich KK, Quint M (2012) Toward a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom. Front plant sci 3:271

    Google Scholar 

  • Koenig RL, Ploetz RC, Kistler HC (1997) Fusarium oxysporum f. sp. cubense consists of a small number of divergent and globally distributed clonal lineages. Phytopathology 87(9):915–923

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB et al (2012a) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genom 13(1):374

    Article  CAS  Google Scholar 

  • Li M-Y, Xu B-Y, Liu J-H et al (2012b) Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian). Plant Cell Rep 31(2):369–378

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou Y, Liu L, Sun L, Li D (2011) In Silico identification and evolutionary analysis of plant MAPKK6s. Plant Mol Biol Rep 29:859–865

    Article  CAS  Google Scholar 

  • MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10(7):339–346

    Article  CAS  PubMed  Google Scholar 

  • Nishihama R, Banno H, Shibata W, Hirano K, Nakashima M, Usami S, Machida Y (1995) Plant homologues of components of MAPK (mitogen-activated protein kinase) signal pathways in yeast and animal cells. Plant Cell Physiol. 36:749–757

    CAS  PubMed  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen M, Brodersen P, Naested H et al (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Ploetz RC (2006) Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. J Phytopathol 96:653–656

    Article  Google Scholar 

  • Reyna NS, Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relat. to Magnaporthe grisea infection. Mol Plant Microbe Interact 19:530–540

    Article  CAS  PubMed  Google Scholar 

  • Samajova O, Plihal O, Al-Yousif M, Hirt H, Samaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Visser M, Gordon T, Fourie G, Viljoen A (2010) Characterisation of South African isolates of Fusarium oxysporum f. sp. cubense from Cavendish bananas. S Afr J Sci 106(3–4):01–06

    Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhance the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang JB, Jia CH et al (2012) De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. cubense tropical race 4 infection. BMC Genom 13(650):1–9

    Google Scholar 

  • Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141(2):475–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6(11):520–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of the People’s Republic of China (No. 2011AA10020605) and the earmarked funds for Modern Agro-industry Technology Research System of China (CARS-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Wang.

Additional information

Communicated by M. Stobiecki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jia, C., Li, J. et al. Identification of six mitogen-activated protein kinase (MAPK) genes in banana (Musa acuminata L. AAA group, cv. Cavendish) under infection of Fusarium Oxysporum f. sp cubense Tropical Race 4. Acta Physiol Plant 37, 115 (2015). https://doi.org/10.1007/s11738-015-1868-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1868-x

Keywords

Navigation