Skip to main content
Log in

Changes in leaf epicuticular wax, gas exchange and biochemistry metabolism between Jatropha mollissima and Jatropha curcas under semi-arid conditions

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Jatropha curcas and Jatropha mollissima plants were evaluated under conditions of high (HSM) and low (LSM) soil moisture in a semi-arid environment, as changes in the content and concentration of epicuticular wax and the leaf metabolism which could have a relationship with drought tolerance. Besides epicuticular wax, gas exchange, antioxidant system and biochemical parameters of the photosynthetic metabolism were measured. The epicuticular wax content increased only in J. mollissima leaves 95 % under LSM, when compared with HSM conditions. Therefore, J. curcas invested less in the production of long-chain n-alkanes than did J. mollissima under LSM conditions. J. mollissima plants showed the highest CO2 assimilation rate during the HSM period compared to J. curcas. Both species showed high stability in some leaf biochemistry products, highlighting the highest sugar content, free amino acids, total soluble protein, and photosynthetic pigments in the leaves of J. mollissima plants under both of the soil moisture conditions. Moreover, the stability and performance of the different parameters, such as morphologic variables, seem to allow J. mollissima plants to tolerate semi-arid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

CO2 assimilation

FAA:

Free amino acids

APX:

Ascorbate peroxidase

CAT:

Catalase

Chl a :

Chlorophyll a

Chl b :

Chlorophyll b

Car:

Carotenoids

E :

Transpiration

g s :

Stomatal conductance

H2O2 :

Hydrogen peroxide

HSM:

High soil moisture

LSM:

Low soil moisture

MDA:

Malondialdehyde

SC:

Soluble carbohydrates

SOD:

Superoxide dismutase

TSP:

Total soluble protein

VPD:

Vapor pressure deficit

References

  • Achten WMJ, Maes WH, Aerts R, Verchot L, Trabucco A, Mathijs E, Singh VP, Muys B (2010) Jatropha: from global hype to local opportunity. J Arid Environ 74:164–165. doi:10.1016/j.jaridenv.2009.08.010

    Article  Google Scholar 

  • Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T, Yamamoto T, Ookawa T, Miyake H, Yano M, Hirasawa T (2013) The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. J Exp Bot 64:1061–1072. doi:10.1093/jxb/ers382

    Article  CAS  PubMed  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi:10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x

    Article  CAS  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031–3035. doi:10.1002/grl.50563

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Everson CS, Mengistu MG, Gush MB (2013) A field assessment of the agronomic performance and water use of Jatropha curcas in South Africa. Biomass Bioenergy 59:59–69. doi:10.1016/j.biombioe.2012.03.013

    Article  Google Scholar 

  • Fairless D (2007) Biofuel: the little shrub that could-maybe. Nature 449:652–655. doi:10.1038/449652a

    Article  PubMed  Google Scholar 

  • Fan X-X, Xu Z-G, Liu X-Y, Tang C-M, Wang L-W, Han X-L (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55. doi:10.1016/j.scienta.2013.01.017

    Article  Google Scholar 

  • Farrar J, Pollock C, Gallagher J (2000) Sucrose and the integration of metabolism in vascular plants. Plant Sci 154:1–11. doi:10.1016/S0168-9452(99)00260-5

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo KV, Oliveira MT, Oliveira AFM, Silva GC, Santos MG (2012) Epicuticular-wax removal influences gas exchange and water relations in the leaves of an exotic and native species from a Brazilian semi-arid region under induced drought stress. Aust J Bot 60:685–692. doi:10.1071/BT12168

    Article  CAS  Google Scholar 

  • Fini A, Bellasio C, Pollastri S, Tattini M, Ferrini F (2013) Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J Arid Environ 89:21–29. doi:10.1016/j.jaridenv.2012.10.009

    Article  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100. doi:10.1104/pp.110.166181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin GL (1945) Preparation of thin sections of synthetic resins and wood-resins composites, and a new macerating method for wood. Nature 155:51. doi:10.1038/155051a0

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M (2009) Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hortic 119:257–263. doi:10.1016/j.scienta.2008.08.006

    Article  CAS  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776. doi:10.1007/BF02703574

    Article  CAS  PubMed  Google Scholar 

  • Havir E, McHale N (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. doi:10.1104/pp.84.2.450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen D (1940) Plant microtechnique. McGraw-Hill Book Company, New York

    Google Scholar 

  • Karaj S, Müller J (2014) Effect of container depth and sedimentation time on quality of Jatropha curcas L. oil. Fuel 118:206–213. doi:10.1016/j.fuel.2013.10.066

    Article  CAS  Google Scholar 

  • Kerstiens G (1996) Signalling across the divide: a wider perspective of cuticular structure–function relationships. Trends Plant Sci 1:125–129. doi:10.1016/S1360-1385(96)90007-2

    Article  Google Scholar 

  • Lichthenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, San Diego, pp 350–382

    Google Scholar 

  • Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009) Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J Arid Environ 73:877–884. doi:10.1016/j.jaridenv.2009.04.013

    Article  Google Scholar 

  • Mayworm MAS, Nascimento AS, Salatino A (1998) Seeds of species from the ‘caatinga’: proteins, oils and fatty acid contents. Br J Bot 21:299–303. doi:10.1590/S0100-84041998000300009

    Google Scholar 

  • Moore S, Stein WH (1948) Photometric ninhydrin method for use in chromatography of amino acids. J Biol Chem 176:367–388

    CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ong HC, Silitonga AS, Masjuki HH, Mahlia TMI, Chong WT, Boosroh MH (2013) Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra. Energ Convers Manag 73:245–255. doi:10.1016/j.enconman.2013.04.011

    Article  CAS  Google Scholar 

  • Pecina-Quintero V, Anaya-López JL, Zamarripa-Colmenero A, Núñez-Colín CA, Montes-García N, Solís-Bonilla JL, Jiménez-Becerril MF (2014) Genetic structure of Jatropha curcas L. in Mexico and probable centre of origin. Biomass Bioenergy 60:147–155. doi:10.1016/j.biombioe.2013.11.005

    Article  CAS  Google Scholar 

  • Pompelli MF, Barata-Luís R, Vitorino HS, Gonçalves ER, Rolim EV, Santos MG, Almeida-Cortez JS, Ferreira VM, Lemos EE, Endres L (2010) Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenergy 34:1207–1215. doi:10.1016/j.biombioe.2010.03.011

    Article  CAS  Google Scholar 

  • Riederer M (2006) Introduction: biology of the plant cuticle. In: Müller MC, Riederer M (eds) Biology of the plant cuticle, Annual Plant Reviews. Blackwell Publishing, Oxford, pp 1–10

    Chapter  Google Scholar 

  • Santos CM, Verissimo V, Wanderley Filho HCL, Ferreira VM, Cavalcante PGS, Rolim EV, Endres L (2013) Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Ind Crops Prod 41:203–213. doi:10.1016/j.indcrop.2012.04.003

    Article  Google Scholar 

  • Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD (2014) Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theor Exp Plant Physiol 26:83–99. doi:10.1007/s40626-014-0008-0

    Article  Google Scholar 

  • Sapeta H, Costa JM, Lourenço T, Maroco J, Linde PVD, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84. doi:10.1016/j.envexpbot.2012.08.012

    Article  CAS  Google Scholar 

  • Silva EN, Silveira JAG, Ribeiro RV, Vieira AS (2015) Photoprotective function of energy dissipation by thermal processes and photorespiratory mechanisms in Jatropha curcas plants during different intensities of drought and after recovery. Env Exp Bot 110:36–45. doi:10.1016/j.envexpbot.2014.09.008

    Article  Google Scholar 

  • Silveira M (1989) Preparo de amostras biológicas para microscopia eletrônica de varredura. In: Souza W (ed) Manual sobre técnicas básicas em microscopia eletrônica. Sociedade Brasileira de Microscopia Eletrônica, Rio de Janeiro, pp 71–79

    Google Scholar 

  • Souza BD, Rodrigues BM, Meiado MV, Santos MG (2010) Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes. Acta Physiol Plant 32:235–244. doi:10.1007/s11738-009-0394-0

    Article  CAS  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18. doi:10.1093/jxb/ern297

    Article  PubMed  Google Scholar 

  • Yang J, Ordiz MI, Jaworski JG, Beachy RN (2011) Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiol Bioch 49:1448–1455. doi:10.1016/j.plaphy.2011.09.006

    Article  CAS  Google Scholar 

  • Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV (2010) The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22:4128–4141. doi:10.1105/tpc.110.078691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq for financially supporting our research on potential oleaginous plants (Proc. CNPq 483550/2010-8/CNPq 551300/2010-8). K. V. Figueiredo thanks the CAPES for a scholarship, and M. G. Santos thanks the CNPq for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro G. Santos.

Additional information

Communicated by J. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, K.V., Oliveira, M.T., Arruda, E.C.P. et al. Changes in leaf epicuticular wax, gas exchange and biochemistry metabolism between Jatropha mollissima and Jatropha curcas under semi-arid conditions. Acta Physiol Plant 37, 108 (2015). https://doi.org/10.1007/s11738-015-1855-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1855-2

Keywords

Navigation