Skip to main content
Log in

GABA shunt deficiencies and accumulation of reactive oxygen species under UV treatments: insight from Arabidopsis thaliana calmodulin mutants

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Environmental stimuli such as UV, paraquat, and H2O2 can induce reactive oxygen species (ROS) production and impair the cellular redox equilibrium. ROS are controlled by a complex network of ROS metabolizing enzymes and play a major signaling role in different compartments of plants cell. GABA, alanine, and glutamate are all GABA shunt-related metabolites that are accumulated in response to oxidative stress. In this study, T-DNA insertion mutants of 7 calmodulin genes (CAM) in Arabidopsis thaliana were used to determine the role of specific CaM in tolerance of plants to oxidative stress induced by ultraviolet (UVA and UVB) treatments. Seedlings growth, seeds germination, reactive oxygen species accumulation, and changes in GABA shunt metabolites levels were determined. Only cam4 mutants showed significant tolerance to UVA and UVB treatments over the other cam mutants during seed germination. Oxidative damage measured as level of MDA caused by UV treatment was found in root and shoot tissues of cam1, cam4, cam5-4, and cam6-1 of Arabidopsis cam mutants. In response to UVA treatment, the shunt metabolites accumulated in root and shoot tissues after 30 min. As a result of UVB treatment, GABA accumulated after 30 min while alanine and glutamate accumulated after 60 min only in root tissue. There was a significant increase in GABA, alanine, and glutamate levels after 30, 60, and 90 min UVA treatments in root and shoot tissue of cam1, cam3-2, cam4, cam5-1, cam5-2, cam6-1, cam7-1 mutants. On the other hand, all shunt metabolites levels were significantly accumulated in root of cam1, cam4, cam5-4, and cam6-1 and only in shoot tissue of cam5-4 and cam6-1 mutants in response to 30, 60, and 90 min UVB treatment. Our results show that cam mutants are sensitive to induced-oxidative stress in response to both UV treatments especially cam1, cam4, cam5-4, cam6-1, and cam7-1 mutants for seed germination and ROS accumulation. Accumulation of GABA shunt metabolites under induced-oxidative stress via UV treatments demonstrates that GABA shunt pathway, GABA metabolites accumulation, and Ca+2/CaM-mediating signaling mechanisms are major components of antioxidant machinery associated with ROS scavenging, H2O2 equilibrium, maintaining balance of cellular redox state, and acquiring tolerance in cellular signaling in response to UV stress in Arabidopsis seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM :

Calmodulin gene

CaM:

Calmodulin protein

Ca+2/CaM:

Calcium/calmodulin complex

H2O2 :

Hydrogen peroxide

GAD:

Glutamate decarboxylase

GABA:

γ-Aminobutyric Acid

MDA:

Malonaledehyde

NAD+ :

Nicotinamide adenine dinucleotide

NADP+ :

Nicotinamide adenine dinucleotide phosphate

ROS:

Reactive oxygen species

TBARS:

Thiobarbiturate reactive substances

UV:

Ultraviolet light (UVA or UVB)

References

  • AL-Quraan NA, Locy RD, Singh NK (2011) Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants. Plant Biotech Rep 5:225–234

    Article  Google Scholar 

  • AL-Quraan NA, Locy RD, Singh NK (2012) Heat and cold stresses phenotypes of Arabidopsis thaliana calmodulin mutants: regulation of gamma-aminobutyric acid shunt pathway under temperature stress. Int J Plant Biology 3(e2):9–17

    CAS  Google Scholar 

  • Alscher RG, Donahue JH, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aurisano N, Bertani A, Reggiani R (1995) Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiol 36:1525–1529

    CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Côme D (2000) Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci Res 10:35–42

    Article  CAS  Google Scholar 

  • Bailly C, Bogatek-Leszczynska R, Côme D, Corbineau F (2002) Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci Res 12:47–55

    Article  CAS  Google Scholar 

  • Bailly C, Leymarie J, Lehner A, Rousseau S, Côme D, Corbineau F (2004) Catalase activity and expression in developing sunflower seeds as related to drying. J Exp Bot 55:475–483

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1983) Methods of enzymatic analysis, vol I, 2nd edn. Weinheim:Verlag Chemie, Academic Press, New York, p 427

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trend Plant Sci 9:110–115

    Article  CAS  Google Scholar 

  • Bouche N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouche N, Fait A, Zik M, Fromm H (2004) The root-specific glutamate decarboxylase (gad1) is essential for sustaining gaba level in Arabidopsis. Plant Mol Biol 55:315–325

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Huang RF, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol 136:4096–4103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  CAS  PubMed  Google Scholar 

  • Desikan RA, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Du L, Poovaiah BW (2005) Ca+2/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–745

    Article  CAS  PubMed  Google Scholar 

  • Fait A, Yellin A, Fromm H (2005) GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett 579:415–420

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, LopezDelgado H, Dat JF, Scott IM (1997) Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hendricks SB, Taylorson RB (1975) Breaking of seed dormancy by catalase inhibition. Proc Natl Acad Sci USA 72:306–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    Article  CAS  PubMed  Google Scholar 

  • Kalbina I, Strid A (2006) Supplementary ultraviolet-b irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes. Plant Cell Environ 29:754–763

    Article  CAS  PubMed  Google Scholar 

  • Kwon SI, Lee H, An CS (2007) Differential expression of three catalase genes in the small radish (Rhaphanus sativus L. var. sativus). Mol Cells 24:37–44

    CAS  PubMed  Google Scholar 

  • Locy RD, Wu S-J, Bisnette J, Barger TW, McNabb D, Zik M, Fromm H, Singh NK, Cherry JH (2000) The regulation of GABA accumulation by heat stress in Arabidopsis. In: Cherry JH, Locy RD, Rychter A (eds) Plant tolerance to abiotic stresses in agriculture: role of genetic engineering. NATO advanced research workshop series in cell biology. Kluwer Academic Publishers, Dordrecht, pp 39–53

  • Ludewig F, Hüser A, Fromm H, Beauclair L, Bouché N (2008) Mutants of GABA transaminase (POP2) suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh) mutants in Arabidopsis. PLoS One 3(10) e3383:1–10

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trend Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:472–497

    Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan RA, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Oracz K, El-Maarouf BH, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007a) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    Article  CAS  PubMed  Google Scholar 

  • Oracz K, Bailly C, Gniazdowska A, Côme D, Corbineau F, Bogatek R (2007b) Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. J Chem Ecol 33:251–264

    Article  CAS  PubMed  Google Scholar 

  • Oracz K, El-Maarouf BH, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oracz K, Voegele A, Tarkowska´ D, Jacquemoud D, Tureckova´ V, Urbanova´ T, Strnad M, Sliwinska E, Leubner-Metzger G (2012) Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol 53:81–95

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reggiani R, Cantu CA, Brambilla I, Bertani A (1988) Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol 29:981–987

    CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidtaive stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species: contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogozhin VV, Kuriliuk TT, Filippova NP (2000) Change in the reaction of the antioxidant system of wheat sprouts after UV-irradiation of seeds [article in Russian]. Biofizika 45:730–736

    CAS  PubMed  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signal triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Shelp BJ, Sinclair T (1998) Accumulation of gamma-aminobutyric acid in nodulated soybean in response to drought stress. Physiol Plant 102:79–86

    Article  CAS  Google Scholar 

  • Shelp BJ, Walton CS, Snedden WA, Tuin LG, Oresnik IJ, Layzell DB (1995) GABA shunt In developing soybean seeds is associated with hypoxia. Physiol Plant 94:219–228

    Article  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trend Plant Sci 4:446–452

    Article  Google Scholar 

  • Simontacchi M, Caro A, Fraga CG, Puntarulo S (1993) Oxidative stress affects [alpha]-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol 103:949–953

    PubMed Central  CAS  PubMed  Google Scholar 

  • Snedden WA, Koutsia N, Baum G, Fromm H (1996) Activation of a recombinant Petunia glutamate decarboxylase by calcium/calmodulin binding domain. J Biol Chem 271:4148–4153

    Article  CAS  PubMed  Google Scholar 

  • Turano FJ, Fang TK (1998) Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiol 117:1411–1421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yevtushenko DP, McLean MD, Peiris S, Van Cauwenberghe OR, Shelp BJ (2003) Calcium/calmodulin activation of two divergent glutamate decarboxylases from tobacco. J Exp Bot 54:2001–2002

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Bown AW (1997) The rapid determination of gamma-aminobutyric acid. Phytochemistry 44:1007–1009

    Article  CAS  Google Scholar 

  • Zik M, Arazi T, Snedden WA, Fromm H (1998) Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Mol Biol 37:967–975

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisreen A. AL-Quraan.

Additional information

Communicated by Z. Miszalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Quraan, N.A. GABA shunt deficiencies and accumulation of reactive oxygen species under UV treatments: insight from Arabidopsis thaliana calmodulin mutants. Acta Physiol Plant 37, 86 (2015). https://doi.org/10.1007/s11738-015-1836-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1836-5

Keywords

Navigation