Skip to main content
Log in

Accumulation and localization of cadmium in moso bamboo (Phyllostachys pubescens) grown hydroponically

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Hydroponics experiment was conducted to identify cadmium (Cd) tolerance and phytoextraction potential of moso bamboo (Phyllostachys pubescens) seedlings grown under different levels of Cd. Application of Cd adversely affected the overall growth and ultrastructural characteristics of moso bamboo. At the highest Cd concentration (400 µM), the growth of moso bamboo seedlings was significantly inhibited, and Cd concentrations in leaves, stems and roots reached the maximum of 25.6, 129.8 and 377 mg kg−1, respectively. Scanning electron microscopy (SEM) revealed that the excessive Cd concentrations caused formation of abundant inclusions in the root and stem. The ultrastructural analysis using transmission electron microscopy (TEM) showed that the excessive Cd concentrations caused abnormal-shaped chloroplasts, disappearance of endoplasmic reticulum, and shrinkage of nucleus and loss of thylakoid membranes. It is suggested that use of moso bamboo as experimental material provides a new perspective for remediation of heavy metal-contaminated soil due to its deep root system and larger biomass. However, mechanisms of Cd uptake and accumulation as well as metal interactions within the plant cell need to be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An Y-J, Kim Y-M, Kwon T-I, Jeong S-W (2004) Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ 326(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hong W, Lan B, Zheng Y, He D (1998) Study on biomass and productivity of Phyllostachys heterocycla cv. pubescens forest in the north of Fujian. Scientia Silvae Sinicae (in Chinese) 34:60–64

    CAS  Google Scholar 

  • Chen F, Dong J, Wang F, Wu F, Zhang G, Li G, Chen Z, Chen J, Wei K (2007) Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67(10):2082–2088

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang X, Zhang Y, Booth T, He X (2009) Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecol Manag 258(7):1489–1496

    Article  Google Scholar 

  • Das P, Samantaray S, Rout G (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Fan K-C, Hsi H-C, Chen C-W, Lee H-L, Hseu Z-Y (2011) Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J Environ Manage 92(10):2818–2822

    Article  CAS  PubMed  Google Scholar 

  • Gajewska E, SkŁodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecoyox Environ Safe 73(5):996–1003

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediat 1(2):115–123

    Article  CAS  Google Scholar 

  • Islam E, Yang XE, Li TQ, Liu D, Jin XF, Meng FH (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    Article  CAS  PubMed  Google Scholar 

  • Kashem MA, Singh BR, Kubota H, Nagashima RS, Kitajima N, Kondo T, Kawai S (2007) Assessing the potential of Arabidopsis halleri ssp. gemmifera as a new cadmium hyperaccumulator grown in hydroponics. Can. J Plant Sci 87(3):499–502

    CAS  Google Scholar 

  • Kováčik J (2013) Hyperaccumulation of cadmium in Matricaria chamomilla: a never-ending story? Acta Physiol Plant 35(5):1721–1725

    Article  Google Scholar 

  • Küpper H, Šetlík I, Spiller M, Küpper FC, Prášil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38(3):429–441

    Article  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals. J Environ Qual 31(1):109–120

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liao B, Lan C, Ye Z, Baker A, Shu W (2010) Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J Environ Qual 39(4):1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Shu W, Lan C (2003) Viola baoshanensis, a new cadmium hyperaccumulator. Chin Sci Bull (in Chinese) 48:2046–2049

    Google Scholar 

  • Liu Y, Wang K, Xu P, Wang Z (2012) Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides. Int J Phytoremediat 14(5):467–480

    Article  CAS  Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao F-J, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128(4):1359–1367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Millán A-F, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65(2):376–385

    Article  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2010) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37

    Article  PubMed  Google Scholar 

  • Patel MJ, Patel JN, Subramanian R (2005) Effect of cadmium on growth and the activity of H2O2 scavenging enzymes in Colocassia esculentum. Plant Soil 273(1–2):183–188

    Article  CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximenes-Embun P, Smith J (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26(10):1657–1672

    Article  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268(17):12297–12302

    CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468–474

    Article  CAS  Google Scholar 

  • Siliang L, Fengping W, Mei R, Wuzhong N (2014) Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site—a hydroponics experiment. Int J Phytoremediat 16(12):1257–1267

    Article  Google Scholar 

  • Solís-Domínguez F, González-Chávez M, Carrillo-González R, Rodríguez-Vázquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141(3):630–636

    Article  PubMed  Google Scholar 

  • Sun R-L, Zhou Q-X, Sun F-H, Jin C-X (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator Solanum nigrum L. Environ Exp Bot 60(3):468–476

    Article  CAS  Google Scholar 

  • Taulavuori K, Prasad M, Taulavuori E, Laine K (2005) Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis. Environ Pollut 135(2):209–220

    Article  CAS  PubMed  Google Scholar 

  • Tudoreanu L, Phillips C (2004) Modeling cadmium uptake and accumulation in plants. Adv Agron 84:121–157

    Article  CAS  Google Scholar 

  • Wang B, Wei W, Liu C, You W, Niu X, Man R (2013) Biomass and carbon stock in moso bamboo forests in subtropical China: characteristics and implications. J Trop For Sci 25(1):137–148

    Google Scholar 

  • Wu J, Yu Y, Zhu Z, Xiao X (2002) Studies on the biomass of different forests in Huzhou city. J Jiangsu For Sci Technol (in Chinese) 29:22–24

    Google Scholar 

  • Xu Y, Wong M, Yang J, Ye Z, Jiang P, Zheng S (2011) Dynamics of carbon accumulation during the fast growth period of bamboo plant. Bot Rev 77(3):287–295

    Article  Google Scholar 

  • Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii Hance: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47(19):1634–1637

    Article  CAS  Google Scholar 

  • Zhou W, Qiu B (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169(4):737–745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported through a grant from the Natural Science Foundation of China (31300520), Science and Technology Program of Zhejiang Province (2014C33043), Zhejiang Province Natural Science Foundation of China (LY12C16004) and Science and Technology Program of Zhejiang Province (2013C33016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Liu.

Additional information

Communicated by J. Kovacik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Islam, E., Peng, D. et al. Accumulation and localization of cadmium in moso bamboo (Phyllostachys pubescens) grown hydroponically. Acta Physiol Plant 37, 56 (2015). https://doi.org/10.1007/s11738-015-1801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1801-3

Keywords

Navigation