Skip to main content
Log in

Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Indole acetic acid at low (IAAL, 10 µM) and high (IAAH, 100 µM) dose-induced responses on growth, chlorophyll a fluorescence and antioxidant potential of widely cultivated Trigonella foenum-graecum L. seedlings grown under cadmium (Cd1, 3 mg Cd Kg−1 soil and Cd2, 9 mg Cd Kg−1 soil) stress were investigated. Cadmium (Cd) at tested doses reduced the growth, pigment contents, photosynthetic (O2 evolution) and carbonic anhydrase (CA) activity which was accompanied with Cd accumulation in tissues. To quantify the performance of photosystem (PS) II, chlorophyll a fluorescence (JIP test) was analyzed and under Cd stress, the yield for primary photochemistry (φP 0), yield of electron transport per trapped exciton (ψ 0), quantum yield of electron transport (φE 0) and performance index of PS II (PIABS) were decreased, while it induced significant rise in energy flux parameters. Foliar application of IAAL dose causes significant reduction in Cd accumulation and hence alleviated the toxic effects of Cd on these parameters appreciably; while at IAAH dose, Cd induced-effects were further aggravated. Respiratory O2 uptake was increased progressively with rising concentration of Cd, while together with IAA, it showed reverse trend. Cd alone and together with IAAH enhanced the oxidative markers: O2 •−, H2O2 and MDA contents despite of the significant increase in SOD and CAT activity; while with IAAL, these markers were declined significantly. Overall results suggest that application of IAAL reduced the Cd accumulation in tissues significantly; hence, increased activity of photosynthesis and antioxidant potential improved the growth performance of Trigonella seedlings grown under Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABS/RC:

The energy fluxes for absorption of photon per active reaction center

CA:

Carbonic anhydrase

CAT:

Catalase

DI0/RC:

Energy dissipation flux per active reaction center

ET0/RC:

Electron transport flux per active reaction center

IAA:

Indole acetic acid

MDA:

Malondialdehyde

Phi_E 0 or φE 0 :

Quantum yield of electron transport

Phi_P 0 or φP 0 :

The quantum yield of primary photochemistry

PIABS :

Performance index of PSII

Psi_0 or Ψ 0 :

Yield of electron transport per trapped exciton

PS II:

Photosystem II

QA:

Primary electron accepter of PS II

RC:

Reaction center

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SOR:

Superoxide radical

TR0/RC:

Trapped energy flux per active reaction center

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology. Blackwell Scientific Publication, Oxford, pp 285–344

    Google Scholar 

  • Basch E, Ulbricht C, Kuo G, Szapary P, Smith M (2003) Therapeutic applications of fenugreek. Alt Med Rev 8:20–27

    Google Scholar 

  • Buschmann C, Lichtenthaler HK (1977) Hill-activity and P700 concentration of chloroplasts isolated from radish seedlings treated with-indole acetic acid, kinetin and gibberellic acid. Z Naturforsch C Bio Sci 32:798–802

    CAS  Google Scholar 

  • Chaoui A, Ferjani EE (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Plant Biol Pathol 328:23–31

    CAS  Google Scholar 

  • Di Cagno R, Guidi L, De Gara L, Soldatini GF (2001) Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defenses in sunflower. New Phytol 151:627–636

    Article  Google Scholar 

  • Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2010) Acute metal stress in Populus tremula × P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics 10:349–368

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylaminonium chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Bouwkamp JC, Solomos T (1998) Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot 49:503–510

    CAS  Google Scholar 

  • Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136:49–58

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase I: occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratao PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Mendoza D, Espadasy Gil F, Santamaria JM, Zapata-Perez O (2007) Multiple effects of cadmium on the photosynthetic apparatus of Avicennia germinans L. as probed by OJIP chlorophyll fluorescence measurements. Z Naturfors C 62:265–272

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Gupta N, Khan DK, Santra SC (2008) An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bull Environ Contamin Toxicol 80:115–118

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongue CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS Lett 276:3148–3162

    Article  CAS  Google Scholar 

  • Kurra-Hotta M, Satoh K, Katoh S (1987) Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol 28:1321–1329

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorphylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Marinos NG (1956) Responses of Avena coleoptile sections to high concentrations of auxins. Aust J Biol Sci 10:147–163

    Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, del Río LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Moreno-Sanchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 36:238–919

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Ilias I (2005) Hormone-induced protection of sunflower photosynthetic apparatus against copper stress. Plant Biol 49:223–228

    Article  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey DM, Goswami CL, Kumar B, Jain S (2000) Hormonal regulation of photosynthetic enzymes in cotton under water stress. Photosynthetica 38:403–407

    Article  CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  CAS  PubMed  Google Scholar 

  • Prasad SM, Zeeshan M (2005) UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum. Plant Biol 49:229–236

    Article  CAS  Google Scholar 

  • Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, Fu Z (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94:56–61

    Article  CAS  PubMed  Google Scholar 

  • Sabater B, Rodrguez MT (1978) Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels. Physiol Plant 43:274–276

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2006) Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull Environ Contam Toxicol 77:312–318

    Article  CAS  PubMed  Google Scholar 

  • Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 445–483

    Google Scholar 

  • Talukdar D (2013) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari A, Kumar P, Singh S, Ansari SA (2005) Carbonic anhydrase in relation to higher plants. Photosynthetica 43:1–9

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fang J, Leonard SS, Rao KMK (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radical Bio Med 36:1434–1443

    Article  CAS  Google Scholar 

  • Wang H, Shan X, Wen B, Owens G, Fang J, Zhang S (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot 61:246–253

    Article  CAS  Google Scholar 

  • Wang BL, Tang XY, Cheng LY, Zhang AZ, Zhang WH, Zhang FS, Liu JQ, Cao Y, Allan DL, Vance CP, Shen JB (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Wilbur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    CAS  PubMed  Google Scholar 

  • Xu J, Wang WY, Yin HX, Liu XJ, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Head, Department of Botany, University of Allahabad, Allahabad, for providing necessary facilities and also to Indian Council of Medical and Research, New Delhi, India for providing financial support to Gausiya Bashri as Junior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo Mohan Prasad.

Additional information

Communicated by H. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashri, G., Prasad, S.M. Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiol Plant 37, 49 (2015). https://doi.org/10.1007/s11738-014-1745-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-014-1745-z

Keywords

Navigation