Skip to main content
Log in

The alleviating effects of selenium and salicylic acid in salinity exposed soybean

Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This research was conducted to screen various treatments of selenium (Se) and/or salicylic acid (SA) to mitigate signs of salinity on soybean. Seedlings were treated with three concentrations of Se (0, 25 and 50 mg l−1), two concentrations of SA (0 and 0.5 mM) and/or two concentrations of NaCl (0 and 100 mM). Se and/or SA had significant enhancing and alleviating effects on the chlorophyll a (Chl a) and carotenoid contents as well as, Chl a/b in the treated plants, but had adverse effects on the Chl b concentrations. The limiting effects of salinity on leaf area and dry mass were significantly eased by the Se and/or SA among which 25 mg l−1 Se and combined treatment of 50 mg l−1 Se and SA were the most effective. The utilization of Se and/or SA led to the improved proline and Mg contents, compared to the control. The supplemented Se and/or SA, especially the mixed ones, resulted in a significant decrease in Na/K ratios. Se and/or SA had significant inducing effects on enzymatic (peroxidase, catalase and superoxide dismutase) and non-enzymatic (ascorbate) antioxidant system. On the basis of the obtained results, it could be stated that the foliar utilization of Se in combination with SA may be used to relieve the signs of salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abeles FB, Biles CL (1991) Characterization of peroxidase in lignifying peach fruit endocarp. Plant Physiol 95:269–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • An FC, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    Article  PubMed  CAS  Google Scholar 

  • Aslam M, Harbit KB, Huffaker RC (1990) Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings. Plant Cell Environ 13:773–782

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Walrow RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Devi DD, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Drzewiecka K, Mleczek M, Gasecka M, Magdziak Z, Golinski P, Chadzinikolau T (2014) Copper phytoextraction with Salix purpurea × viminalis under various Ca/Mg ratios. Part 2. Effect on organic acid, phenolics and salicylic acid contents. Acta Physiol Plant 36:903–913

    Article  Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci 188:86–93

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Germ M, Kreft I, Stibilj V, Urbanc-Bericic O (2007) Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiol Biochem 45:162–167

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Hartikainen H, Xue TL, Piironen V (2000) Selenium as an anti-oxidant and prooxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Idrees M, Naeem M, Khan MN, Aftab T, Khan MM, Moinuddin N (2012) Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma 249:709–720

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mung bean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:e1

    Article  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid A, Quick W, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  PubMed  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought salt, and temperature stress-induced metabolic rearrangement and regulatory net-works. J Exp Bot 4:1593–1608

    Article  Google Scholar 

  • Li G, Wan S, Zhou J, Yang Z, Qina P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crop Prod 31:13–19

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148:350–380

    Article  CAS  Google Scholar 

  • Lindblom SD, Valdez-Barillas RJ, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits E (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  CAS  Google Scholar 

  • Loutfy N, El-Tayeb MA, Hassanen AM, Moustafa MFM, Sakuma Y, Inouhe M (2012) Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). J Plant Res 125:173–184

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lee J, Miura T, Hasegawa PM (2010) SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol 51:103–113

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Mutlu S, Atici O (2012) Alleviation of high salt toxicity-induced oxidative damage by salicylic acid pretreatment in two wheat cultivars. Toxicol Ind Health 29:89–96

    Article  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. J Plant Physiol 168:807–815

    Article  PubMed  CAS  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    Article  PubMed  CAS  Google Scholar 

  • Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    Article  CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectriphotometric quantitation of antioxidant capacity through the formation of a phosphomolibdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra Reddya A, Viswanatha Chaitanya K, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  Google Scholar 

  • Scheumann V, Ito H, Tanaka A, Schoch S, Rüdiger W (1996) Substrate specificity of chlorophyll (ide)b reductase in etioplasts of barley (Hordeum vulgare L.). Eur J Biochem 242:163–170

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci 195:165–171

    Article  CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Sepänen M (2004) Effect of selenium treatments on potato (Solanum tuberosum L.) growth and concentration of soluble sugars and starch. J Agric Food Chem 52:5378–5382

    Article  PubMed  CAS  Google Scholar 

  • Wasti S, Mimouni H, Smiti S, Zid E, Ahmed HB (2012) Enhanced salt tolerance of tomatoes by exogenous salicylic acid applied through rooting medium. OMICS J Integr Biol 16:1–8

    Article  Google Scholar 

  • Xue TL, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Zhang L, Ackley AR, Pilon-Smits EAH (2007) Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions. J Plant Physiol 164:327–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Islamic Azad University, Science and Research branch. The authors would like to thank Dr. Z. Oraghi Ardebili, Dr. S. Jabbarpoor, Dr. F. Afshar for their supporting helps and Soil and Water Research Institute for providing seeds and Rhizobium inoculum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Saadatmand.

Additional information

Communicated by J. van Staden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardebili, N.O., Saadatmand, S., Niknam, V. et al. The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiol Plant 36, 3199–3205 (2014). https://doi.org/10.1007/s11738-014-1686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1686-6

Keywords

Navigation