Skip to main content

Carbon concentrating mechanisms: in rescue of Rubisco inefficiency

Abstract

Agricultural yields have kept pace with the rising demands in the recent past as a result of the breeding and improved farming practices, but these practices alone will not be able to meet the demands of the future. The focus is now on the enhancement of the photosynthetic machinery. In photosynthesis, the rate limiting step is the one catalyzed by RuBisCO- Ribulose-1,5-bisphosphate carboxylase/oxygenase (4.1.1.39), which, because of its loose specificity and low turnover rate, is the primary target of most research programs directed towards improved photosynthesis. The other avenues of photosynthetic machinery that are under investigation to enhance it include—improved stomatal regulation and membrane permeability, RuBisCO with high specificity for CO2 and higher catalytic turnover; bypass of photorespiration and introduction of carbon concentrating mechanism (CCM) into the C3 plants. Carbon concentrating mechanisms cause accumulation of carbon dioxide in vicinity of RuBisCO producing a high CO2/O2 ratio and hence an environment more suitable for carboxylation reactions than oxygenation reactions. This article includes the basic details of the major naturally occurring CCMs in various photosynthetic organisms to identify the knowledge gaps in each which could help study the prospects of its possible introduction into a non-native system as C3 plants which are devoid of any CCM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

3-PGA:

3-Phosphoglycerate

AMP:

Adenosine 5′ monophosphate

ATP:

Adenosine triphosphate

BMC:

Bacterial microcompartment

C3 plants:

Plants with a three carbon compound as the first product after CO2 fixation

C4 plants:

Plants with a four carbon compound as the first product after CO2 fixation

CA:

Carbonic anhydrase

CAM:

Crassulacean acid metabolism

CCM:

Carbon concentrating mechanism

Ci:

Inorganic carbon

HCO3 :

Bicarbonate

IRES:

Internal ribosomal entry site

Kcat :

Catalytic rate

Km :

Michaelis constant

NADPH:

Nicotinamide adenine dinucleotide phosphate

RLP:

RuBisCO like protein

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase

RuBP:

Ribulose-1,5-bisphosphate

References

  1. Akhani H, Trimborn P, Ziegler H (1997) Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst Evol 206:187–221

    Article  Google Scholar 

  2. Alber BE, Ferry JG (1996) Characterization of heterologously produced carbonic anhydrase from Methanosarcina thermophila. J Bacteriol 178:3270–3274

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Alonso H, Blayney MJ, Beck JL, Whitney SM (2009) Substrate-induced assembly of Methanococcoides burtonii d-Ribulose-1,5-bisphosphate carboxylase/oxygenase dimers into decamers. J Biol Chem 284:33876–33882

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  4. Andersson I (2008) Catalysis and regulation in RuBisCO. J Exp Bot 59:1555–1568

    PubMed  Article  CAS  Google Scholar 

  5. Andrews (1988) Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem 263:12213–12219

    PubMed  CAS  Google Scholar 

  6. Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302:286–290

    PubMed  Article  CAS  Google Scholar 

  7. Badger MR, Bek EJ (2008) Multiple RuBisCO forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59:1525–1541

    PubMed  Article  CAS  Google Scholar 

  8. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    PubMed  Article  CAS  Google Scholar 

  9. Badger MR, Hanson DT, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  10. Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ et al (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597

    PubMed  Article  CAS  Google Scholar 

  11. Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over phanerozoic time. Am J Sci 301:182–204

    Article  CAS  Google Scholar 

  12. Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, Savage DF (2012) Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci USA 109(2):478–483

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct Plant Biol 29:379–392

    Article  CAS  Google Scholar 

  14. Cannon GC, Baker SH, Soyer F, Johnson DR, Bradburne CE, Mehlman JL et al (2003) Organization of carboxysome genes in the thiobacilli. Curr Microbiol 46:115–119

    PubMed  Article  CAS  Google Scholar 

  15. Cook CM, Lanaras T, Wood AP, Codd GA, Kelly DP (1991) Kinetic properties of ribulose bisphosphate carboxylase/oxygenase from Thiobacillus thyasiris, the putative symbiont to Thyasira flexuosa (Montagu), a bivalve mussel. J Gen Microbiol 137:1491–1496

    Article  CAS  Google Scholar 

  16. Dobrinski KP, Longo DL, Scott KM (2005) A hydrothermal vent chemolithoautotroph with a carbon concentrating mechanism. J Bacteriol 187:5761–5766

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  17. Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual–cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    PubMed  Article  CAS  Google Scholar 

  18. Enami I, Suzuki T, Tada O, Nakada Y, Nakamura K, Tohri A et al (2005) Distribution of the extrinsic proteins as a potential marker for the evolution of photosynthetic oxygen evolving photosystem II. FEBS J 272:5020–5030

    PubMed  Article  CAS  Google Scholar 

  19. Fukuzawa H, Fujiwara S, Yamamoto Y, Dionisio-Sese ML, Miyachi S (1990) cDNA cloning, sequence and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci USA 87:4383–4387

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. Funke RP, Karlsson J, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Plant Physiol 114:237–244

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. Gibbs SP (1962) The ultrastructure of the pyrenoids of green algae. J Ultrastructure Res 7:262–272

    Article  Google Scholar 

  22. Giordano M, Beardall, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    PubMed  Article  CAS  Google Scholar 

  23. Giraud E, Hannibal L, Fardoux J, Vermeglio´ A, Dreyfus B (2000) Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc Natl Acad Sci USA 97:14795–14800

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  24. Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, Hammond D (1997) Sulfide acquisition by the vent worm Riftia pachyptila appears to be via uptake of HS, rather than H2S. J Exp Biol 200:2609–2616

    PubMed  CAS  Google Scholar 

  25. Gonzales AD, Light YK, Zhang Z, Iqbal T, Lane TW, Martino A (2005) Proteomic analysis of the CO2-concentrating mechanism in the open-ocean cyanobacterium Synechococcus WH8102. Can J Bot 83:735–745

    Article  CAS  Google Scholar 

  26. Gutteridge S, Pierce J (2006) A unified theory for the basis of the limitation of the primary reaction of photosynthetic CO2 fixation: was Dr. Pangloss right? Proc Natl Acad Sci USA 103:7203–7204

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. Iancu CV, Ding HJ, Morris DM, Dias DP, Gonzales AD, Martino A, Jensen GJ (2007) The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography. J Mol Biol 372:764–773

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase. Nature 291:513–515

    Article  CAS  Google Scholar 

  29. Kane HJ, Viil J, Entsch B, Paul K, Morell MK, Andrews TJ (1994) An improved method for measuring the CO2/O2 specificity of ribulose bisphosphate carboxylase/oxygenases. Aust J Plant Physiol 21:449–461

    Article  CAS  Google Scholar 

  30. Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic organisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    PubMed  Article  CAS  Google Scholar 

  31. Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164:55–77

    Article  Google Scholar 

  32. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938

    PubMed  Article  CAS  Google Scholar 

  33. Kinney JN, Axen SD, Kerfeld CA (2011) Comparative analysis of carboxysome shell proteins. Photosynth Res 109:21–32

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  34. Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME et al (2009) Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–753

    PubMed  Article  CAS  Google Scholar 

  35. Kreel NE, Tabita F (2007) Substitutions at methionine 295 of Archaeoglobus fulgidus ribulose-1,5-bisphosphate carboxylase/oxygenase affect oxygen binding and CO2/O2 specificity. J Biol Chem 282:1341–1351

    PubMed  Article  CAS  Google Scholar 

  36. Kucho K, Ohyama K, Fukuzawa H (1999) CO2-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. Plant Physiol 121:1329–1337

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. Lloyd J, Farquhar GD (1994) δ13 C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99:201–215

    Article  Google Scholar 

  38. Long BM, Price GD, Badger MR (2005) Proteomic assessment of an established technique for carboxysome enrichment from Synechococcus PCC 7942. Can J Bot 83:746–757

    Article  CAS  Google Scholar 

  39. Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC 7942 reveals multiple RuBisCO complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 282:29323–29335

    PubMed  Article  CAS  Google Scholar 

  40. Long BM, Tucker L, Badger MR, Price GD (2010) Functional cyanobacterial β-carboxysomes have an absolute requirement for both long and short forms of the ccmM protein. Plant Physiol 153(1):285–293

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. Ludwig M, Sültemeyer D, Price GD (2000) Isolation of ccmKLMN genes from the marine cyanobacterium, Synechococcus sp PCC 7002 (Cyanophyceae), and evidence that CcmM is essential for carboxysome assembly. J Phycol 36:1109–1118

    Article  CAS  Google Scholar 

  42. Meng J, Wang F, Wang F, Zheng Y, Peng X, Zhou H, Xiao X (2009) An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase. ISME J 3:106–116

    PubMed  Article  CAS  Google Scholar 

  43. Menon BB, Heinhorst S, Shively JM, Cannon GC (2010) The carboxysome shell is permeable to protons. J Bacteriol 192(22):5881–5886

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. Mitchell (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    PubMed  Article  CAS  Google Scholar 

  45. Mitra M, Mason CB, Xiao Y, Ynalvez RA, Lato SM, Moroney JV (2005) The carbonic anhydrase gene families of Chlamydomonas reinhardtii. Can J Bot 83:780–795

    Article  CAS  Google Scholar 

  46. Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F et al (2004) Expression profiling-based identification of CO2 responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595–1607

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. Newman J, Branden CI, Jones TA (1993) Structure determination and refinement of RuBisCO. Acta Crystallogr D Biol Crystallogr 49:548–560

    PubMed  Article  CAS  Google Scholar 

  48. Ogawa T, Amichay D, Gurevitz M (1994) Isolation and characterization of the ccmM gene required by the cyanobacterium Synechocystis PCC6803 for inorganic carbon utilization. Photosyn Res 39:183–190

    PubMed  Article  CAS  Google Scholar 

  49. Park YI, Karlsson J, Rojdestvenski I, Pronina N, Klimov V, Oquist G, Samuelsson G (1999) Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. FEBS Lett 444:102–105

    PubMed  Article  CAS  Google Scholar 

  50. Pena KL, Castela SE, Araujo C, Espieb GS, Kimbera MS (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 107:2455–2460

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  51. Price GD, Badger MR (1989) Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942: two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysome. Plant Physiol 91:514–525

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  52. Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2—concentrating mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    PubMed  Article  CAS  Google Scholar 

  53. Price GD, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  54. Pronina NA, Ramazanov ZM, Semenenko VE (1981) Carbonic anhydrase activity of Chlorella cells as a function of CO2 concentration. Sov Plant Physiol 28:345–351

    Google Scholar 

  55. Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  56. Raven JA (1997) CO2 concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ 20:147–154

    Article  CAS  Google Scholar 

  57. Raven JA, Beardall J (2003) Carbon acquisition mechanisms in algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 225–244

    Chapter  Google Scholar 

  58. Reinfelder JR, Kraepiel AM, Morel FM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    PubMed  Article  CAS  Google Scholar 

  59. Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  60. Reinhold L, Zviman M, Kaplan A (1989) A quantitative model for inorganic carbon fluxes and photosynthesis in cyanobacteria. Plant Physiol Biochem 27:945–954

    CAS  Google Scholar 

  61. Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms. Photosynth Res 93:79–88

    PubMed  Article  CAS  Google Scholar 

  62. Sage RF, Seemann JR (1993) Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants. Plant Physiol 102:21–28

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  63. Savira Y, Noorb E, Milob R, Tlustya T (2010) Cross-species analysis traces adaptation of RuBisCO toward optimality in a low-dimensional landscape. Proc Natl Acad Sci USA 107:3475–3480

    Article  Google Scholar 

  64. Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281:7546–7555

    PubMed  Article  CAS  Google Scholar 

  65. Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  66. Shively JM, Decker GC, Greenawalt JW (1970) Comparative ultrastructure of the Thiobacilli. J Bacteriol 101:618–627

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Shively JM, Balld FL, Brown H, Saunde RF (1973) Functional organelles in prokaryotes: polyhedral inclusions (Carboxysomes) of Thiobacillus neapolitanus. Science 182:584–586

    PubMed  Article  CAS  Google Scholar 

  68. Sicheritz-Ponten T, Andersson SGE (2001) A phylogenomic approach to microbial evolution. Nucleic Acids Res 29:545–552

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  69. Smith EC, Griffiths H (1996) A pyrenoid based carbon concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta 200:203–212

    CAS  Google Scholar 

  70. Smith ME, Koteyeva NK, Voznesenskaya EV, Okita TW, Edwards GE (2009) Photosynthetic features of non-Kranz type C-4 verses Kranz type C-4 and C-3 species in subfamily Suaedoideae (Chenopodiaceae). Funct Plant Biol 36:770–782

    Article  CAS  Google Scholar 

  71. So AKC, John-McKay M, Espie GS (2002) Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Planta 214:456–467

    PubMed  Article  CAS  Google Scholar 

  72. So AKC, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of carboxysome shell. J Bacteriol 186:623–630

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  73. Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473

    PubMed  Article  CAS  Google Scholar 

  74. Strakenberg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW et al (2006) Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. App Environ Microbiol 72:2050–2063

    Article  Google Scholar 

  75. Sültemeyer DF, Rinast KA (1996) The CO2 permeability of the plasma membrane of Chlamydomonas reinhardtii: mass-spectrometric 18O exchange measurements from 13C18O2 in suspension of carbonic anhydrase-loaded plasma-membrane vesicles. Planta 200:358–368

    Article  Google Scholar 

  76. Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the RuBisCO-like proteins and their RuBisCO homologs. Microbiol Mol Biol Rev 71:576–599

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  77. Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS (2008) Distinct form I, II, III and IV RuBisCO proteins from the three kingdoms of life provide clues about RuBisCO evolution and structure/function relationships. J Exp Bot 59:1515–1524

    PubMed  Article  CAS  Google Scholar 

  78. Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086

    PubMed  Article  CAS  Google Scholar 

  79. Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  80. Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162

    PubMed  Article  CAS  Google Scholar 

  81. Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO (2007) Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 5(6):e144

    PubMed  Article  PubMed Central  Google Scholar 

  82. Tsai Y, Sawaya MR, Yeates TO (2009) Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C. Acta Crystallogr D Biol Crystallogr 65:980–988

    PubMed  Article  CAS  Google Scholar 

  83. Ueno O (2001) Environmental regulation of C3 and C4 differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiol 127:1524–1532

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  84. Von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosyn Res 77:191–207

    Article  Google Scholar 

  85. Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662

    PubMed  Article  CAS  Google Scholar 

  86. Voznesenskaya EV, Edwards GE, Kiirats O, Artyusheva EG, Franceschi VR (2003) Development of biochemical specialization and organelle partitioning in the single celled C4 system in leaves of Borszczowia aralocaspica (Chenopodiaceae). Am J Bot 90:1669–1680

    PubMed  Article  CAS  Google Scholar 

  87. Wang HL, Postier BL, Burnap RL (2004) Alterations in global pattern of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    PubMed  Article  CAS  Google Scholar 

  88. Wang Y, Sun Z, Horken KM, Im C, Xiang Y, Grossman AR, Weeks DP (2005) Analysis of CIA5, the master regulator of the carbon-concentrating mechanisms in Chlamydomonas reinhardtii, and its control of gene expression. Can J Bot 83:765–779

    Article  CAS  Google Scholar 

  89. Whitney SM, Baldet P, Hudson GS, Andrews TJ (2001) Form I RuBisCOs from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J 26:535–547

    PubMed  Article  CAS  Google Scholar 

  90. Woodger FJ, Badger MR, Price GD (2003) Inorganic carbon limitation induces transcripts encoding components of the CO2 concentrating mechanism in Synechococcus sp. PCC 7942 through a redox independent pathway. Plant Physiol 133:2069–2080

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  91. Woodger FJ, Badger MR, Price GD (2005) Sensing of inorganic carbon limitation in Synechococcus PCC 7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiol 139:1959–1969

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  92. Yamano T, Fukuzawa H (2009) Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J Basic Microbiol 49:42–51

    PubMed  Article  CAS  Google Scholar 

  93. Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147:340–354

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  94. Yoshida S, Atomi H, Imanaka T (2007) Engineering of a type III RuBisCO from a hyperthermophilic archaeon in order to enhance catalytic performance in mesophilic host cells. Appl Environ Microbiol 73:6254–6261

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  95. Yoshioka S, Taniguchi F, Miura K, Inoue T, Yamano T, Fukuzawa H (2004) The novel Myb transcription factor LCR1 regulates the CO2 -responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 16:1466–1477

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  96. Zhu G, Jensen RG, Bohnert HJ, Wildner GF, Schlitter J (1998) Dependence of catalysis and CO2/O2 specificity of RuBisCO on the carboxy-terminus of the large subunit at different temperatures. Photosynth Res 57:71–79

    Article  CAS  Google Scholar 

  97. Zhu XG, Long SP, Ort DR (2010) C4 rice- an ideal arena for systems biology research. J Integr Plant Biol 52:762–770

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Birla Institute of technology and sciences, Pilani, Rajasthan, India for providing infrastructural and logistic support. GKS is thankful to the UGC-BSR, New Delhi, India for her fellowship. This work was supported by SERB fast track project SERC/LS-0141/2010 sanctioned by the government of India to SM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandhya Mehrotra.

Additional information

Communicated by A.K.Kononowicz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sidhu, G.K., Mehrotra, R. & Mehrotra, S. Carbon concentrating mechanisms: in rescue of Rubisco inefficiency. Acta Physiol Plant 36, 3101–3114 (2014). https://doi.org/10.1007/s11738-014-1652-3

Download citation

Keywords

  • C4 metabolism
  • Carbon concentrating mechanism
  • Carboxysomes
  • Pyrenoids
  • RuBisCO