Skip to main content
Log in

Exploitation of synthetic-derived wheats through osmotic stress responses for drought tolerance improvement

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The development of drought tolerant wheat cultivars has been slow due to lack of understanding the diagnostic physiological parameters associated with improved productivity under water stress. We evaluated responses to PEG induced osmotic stress under hydroponics in D-genome synthetic derived and bread wheat germplasm with the main aim to unravel and identify some promising attributes having role in stress tolerances. Genotypes used in this study differed in their morpho-physiological and biochemical attributes. Tolerant genotypes exhibited the ability to ameliorate harmful effects of PEG induced osmotic stress through better osmotic adjustment achieved through substantial relative water content (RWC), lowered osmotic potential, relatively stable root length having maximum water extraction capacity, significant increase in osmoprotectant concentration and relatively enhanced antioxidant activities. The results clearly revealed the importance of synthetic derivatives over check cultivars and conventional wheats in terms of osmotic stress responses. Interestingly, synthetic-derived advanced lines with Aegilops tauschii in its parentage including AWL-02, AWL-04 and AWL-07 proved superior over the best rainfed check cultivar (Wa-01). It was concluded that synthetic-derived wheats has great potential to improve a range of stress adaptive traits. It could, therefore, be recommended to be a useful strategy for allowing modern bread wheat to become adapted to a wider range of environments in future climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heatrh LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Nageswara RC, Kesmala T, Wright GC, Patanothai A (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194:113–125

    Article  CAS  Google Scholar 

  • Ashraf MY, Naqvi MH, Khan AH (1996) Evaluation of four screening techniques for drought tolerance in wheat (Triticum aestivum L.). Acta Agron Hung 44:213–220

    Google Scholar 

  • Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286

    Article  CAS  PubMed  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. PNAS 102:3459–3464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coue I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  Google Scholar 

  • Dhana SS, Sethi GS, Behel RK (2002) Inheritance of seedling traits under drought stress conditions in bread wheat. Cereal Res Comm 30:293–300

    Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Gorin N, Heidema FT (1976) Peroxidase activity in golden delicious apples as a possible parameter of ripening and senescence. J Agric Food Chem 24:200–201

    Article  CAS  PubMed  Google Scholar 

  • Grzesiak S, Grzesiak MT, Filek W et al (2003) Evaluation of physiological screening tests for breeding drought resistant triticale (xTriticosecale Wittmack). Acta Physiol Plant 25:29–37

    Google Scholar 

  • Hafid RE, Smith DH, Karrou M, Samir K (1998a) Morphological attributes associated with early-season drought tolerance in spring durum wheat in a mediterranean environment. Euphytica 101:273–282

    Article  Google Scholar 

  • Hafid RE, Smith DH, Karrou M, Samir K (1998b) Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment. Ann Bot 81:363–370

    Article  Google Scholar 

  • Hixcox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003a) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant 46:73–78

    Article  CAS  Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003b) Ammonium ion, ethylene, and abscisic acid in polyethylene glycol-treated rice leaves. Biol Plant 46:239–242

    Article  CAS  Google Scholar 

  • IRRI (2007) CROPSTAT for Windows, Version 7.2 Metro Manila, Philippines

  • Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson P, Rubertson M, Cupper M, Hammer G (1996) The role of physiological understanding in plant breeding from breeding perspective. Field Crops Res 49:11–37

    Article  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Lilley JM, Howe GN, Graham JM (2007) Impact of subsoil water use on wheat yield. Aust J Agric Res 58:303–315

    Article  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu P (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Larher F, Leport L, Petrivalsky M, Chappart M (1993) Effectors for the osmoinduced proline response in higher plants. Plant Physiol Biochem 31:911–922

    CAS  Google Scholar 

  • Lorens GF, Bennett JM, Loggale LB (1987) Differences in drought resistance between two corn hybrids. II. Component analysis and growth rates. Agron J 79:808–813

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Boil Chem 193:265–275

    CAS  Google Scholar 

  • Marcinska I, CzyczyÅ‚o-Mysza I, Skrzypek E, Filek M, Dziurka M, Dziurka K, Waligorski P, Juzon K, Cyganek K, Grzesiak S (2013a) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14:13171–13193

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcinska I, CzyczyÅ‚o-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA (2013b) Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant 35:451–461

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Weir R (1981) Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Aust J Plant Physiol 8:93–105

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Nyachiro JM, Briggs KG, Hoddinott J, Johnson-Flanagan AM (2001) Chlorophyll content, chlorophyll fluorescence and water deficit in spring wheat. Cereal Res Commun 29:135–142

    CAS  Google Scholar 

  • Pospisilova J, Batkova P (2004) Effects of pre-treatments with abscisic acid and/or benzyladenine on gas exchange of French bean, sugar beet, and maize leaves during water stress and after rehydration. Biol Plant 48:395–399

    Article  CAS  Google Scholar 

  • Raziuddin Swati ZA, Bakht J, Farhatullah Ullah N, Shafi M, Akmal M, Hassan G (2010) In situ assessment of morpho-physiological response of wheat (Triticum aestivum L.) genotypes to drought. Pak J Bot 42:3183–3195

    Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  CAS  PubMed  Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166

    Article  CAS  Google Scholar 

  • Sainio P, Makela P (1995) Comparison of physiological methods to assess drought tolerance in oats. Acta Agric Scand Sect B Soil Plant Sci 45:32–38

    Google Scholar 

  • Salekjalali M, Haddad R, Jafari B (2012) Effects of soil water shortages on the activity of antioxidant enzymes and the contents of chlorophylls and proteins in barley. Am Eur J Agric Environ Sci 12:57–63

    CAS  Google Scholar 

  • Sayar R, Khemira H, Kameli A, Mosbahi M (2008) Physiological tests as predictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Agron Res 6:79–90

    Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • StatSoft Inc. (2004) STATISTICA (data analysis software system), version 7. www.statsoft.com

  • Stephen PL, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 46:229–276

    Google Scholar 

  • Taiz L, Zeiger E (2006) Stress physiology, 4th edn. Sinauer Asssociaes Inc, MA, pp 671–702

    Google Scholar 

  • Tambussi EA, Bartoli CG, Beltrano J, Guimet JJ, Araus JL (2000) Oxidative damage to thylakoid proteins in winter stressed leaves of wheat. Physiol Plant 108:398–404

    Article  CAS  Google Scholar 

  • Tatar O, Gevrek MN (2008) Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian J Plant Sci 7:409–412

    Article  CAS  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legume to water limited environments. Adv Agron 71:193–231

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vetter JL, Steinberg MP, Nelson AI (1958) Quantitative determination of peroxidase in sweet corn. J Agric Food Chem 6:39–41

    Article  CAS  Google Scholar 

  • Winter SR, Musick JT, Porter KB (1988) Evaluation of screening techniques for breeding drought resistant winter wheat. Crop Sci 28:512–516

    Article  Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth. Crop Sci 41:1321–1329

    Article  Google Scholar 

  • Zgallai H, Steppe K, Lemeur R (2005) Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol-induced water deficit. J Integr Plant Biol 47:1470–1478

    Article  CAS  Google Scholar 

  • Zhang JX, Kirham MB (1994) Drought stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zhang J, Blum A, Nguyen HT (1999) Genetic analysis of osmotic adjustment in crops. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressen RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This manuscript is part of the Ph.D. research work and we acknowledge Higher Education Commission (HEC), Pakistan to provide funding under 5,000 indigenous fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ali.

Additional information

Communicated by W. Filek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Arshad, M., Naqvi, S.M.S. et al. Exploitation of synthetic-derived wheats through osmotic stress responses for drought tolerance improvement. Acta Physiol Plant 36, 2453–2465 (2014). https://doi.org/10.1007/s11738-014-1618-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1618-5

Keywords

Navigation