Skip to main content
Log in

24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3)2 stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Key message

This study focuses on the impact of carbohydrate metabolism and endogenous polyamines levels in leaves of cucumber seedlings under salt stress by exogenous BRs.

Abstract

The effects of 24-epibrassinolide (EBL) on carbohydrate metabolism and endogenous content of polyamines were investigated in cucumber seedlings (Cucumis sativus L. cv. Jinyou No. 4) exposed to salinity stress [80 mM Ca(NO3)2]. Spraying of exogenous EBL partially enhanced the enzyme activities of sucrose phosphate synthase, sucrose synthase and acid invertase; thus, raising the level of sucrose, fructose and total soluble sugars. The amylase activity was also increased by EBL, companied by the rising of sucrose level. These results indicated that EBL improved the carbohydrate metabolism of cucumber under Ca(NO3)2 stress. Moreover, EBL raised the levels of soluble conjugated and insoluble bound polyamines while lowered the free polyamines content, particularly putrescine. Our experiment demonstrated that exogenous EBL elevated stability of cellular membrane and positively improve the carbohydrate metabolism in cucumber growing under Ca(NO3)2 stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AI:

Acid invertase

BRs:

Brassinosteroids

EBL:

24-Epibrassinolide

MSI:

Membrane stability index

PAs:

Polyamines

Put:

Purtescine

Spd:

Spermidine

Spm:

Spermine

SPS:

Sucrose phosphate synthase

SS:

Sucrose synthase

ROS:

Reactive oxygen species

RWC:

Relative water content

References

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942

    Article  PubMed  Google Scholar 

  • Buysse J, Merckx R (1993) An important colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44:1627–1629

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 1011:9909–9914

    Article  Google Scholar 

  • Darwish T, Atallah T, E1 Moujabber M, Khatib N (2005) Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agric Water Manage 78:152–164

    Article  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochim Biophys Acta 1767:272–280

    Article  PubMed  CAS  Google Scholar 

  • Doehlert DC, Duke SH, Anderson L (1982) Beta-amylases from alfalfa (Medicago sativa L.) roots. Plant Physiol 69:1096–1102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fan HF, Du CX, Guo SR (2010) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot. doi:10.1016/j.envexpbot.2010.09.007

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Sign 11:861–915

    Article  CAS  Google Scholar 

  • Guo J, Jermyn WA, Turnbull MH (2002) Carbon partitioning and sucrose metabolism in two field-grown asparagus (Asparagus officinalis) cultivars with contrasting yield. Funct Plant Biol 29:517–526

    Article  CAS  Google Scholar 

  • Hamdani S, Yaakoubi H, Carpentier R (2011) Polyamines interaction with thylakoid proteins during stress. J Photochem Photobiol, B 104:314–319

    Article  CAS  Google Scholar 

  • Hubbard NL, Huber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose accumulation in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  PubMed  CAS  Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29(12):1393–1403

    Article  CAS  Google Scholar 

  • Janeczko A, Gullner G, Skoczowski A, Dubert F, Barna B (2007) Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plantarum 51:355–358

    Article  CAS  Google Scholar 

  • Ju M, Shi WM, Xing GX, Zhu ZL (2011) Nitrogen balance and loss in a greenhouse vegetable system in southeastern China. Pedosphere 21:464–472

    Article  Google Scholar 

  • Kitamura Y, Yano T, Honna T, Yamamoto S, Inosako K (2006) Causes of farmland salinization and remedial measures in the Aral Sea basin-research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agric Water Manage 85:1–14

    Article  Google Scholar 

  • Kuznetsov VV, Radyukina NL, Shevyakova NI (2006) Polyamines and stress: biological role, metabolism, and regulation. Russ J Plant Physiol 53:583–604

    Article  CAS  Google Scholar 

  • Li DP, Wu ZJ, Liang CH, Chen LJ (2004) Characteristics and regulation of greenhouse soil environment. Chin J Ecol 23:192–197

    CAS  Google Scholar 

  • Lowell CA, Tomlinson PT, Koch KE (1989) Sucrose-metabolising enzymes in transport tissue and adjacent sink structures in developing citrus fruit. Plant Physiol 90:1394–1402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manter DK, Kerrigan J (2004) A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot 55:2581–2588

    Article  PubMed  CAS  Google Scholar 

  • McMurtrie RE, Wang YP (1993) Mathematical models of the photosynthetic responses of tree stands to rising CO2 concentrations and temperatures. Plant Cell Environ 6:1–13

    Article  Google Scholar 

  • Miron D, Schaffer AA (1991) Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol 95:623–627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyagi M, Oku H, Chinen I (1990) Purification and action pattern on soluble starch of α-amylase from sugarcane leaves. Agric Biol Chem 54:849–855

    Article  CAS  Google Scholar 

  • Morgan JM (1992) Osmotic component and properties associated with genotypic differences in osmoregulation in wheat. Funct Plant Biol 10:67–76

    Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  PubMed  CAS  Google Scholar 

  • Rahman T, Krishna UDP (2010) Genes involved in brassinosteroid-mediated abiotic stress tolerance. J Biotechnol. doi:10.1016/j.jbiotec.2010.08.289

    PubMed  Google Scholar 

  • Sharma P, Rajam MV (1995) Spatial and temporal changes in endogenous polyamine levels associated with osmotic embryogenesis from different hypocotyls segments of eggplant (Solanum melongena L.). J Plant Physiol 146:658–664

    Article  CAS  Google Scholar 

  • Shevyakova NI, Rakitin VYU, Stetsenko LA, Aronova EE, Kutnetsov VV (2006) Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity. Plant Growth Regul 50:69–78

    Article  CAS  Google Scholar 

  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant 146:285–296

    Article  PubMed  CAS  Google Scholar 

  • Skoczowski A, Janeczko A, Gullner G, Tóbias I, Kornaś A, Barna B (2011) Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringe or with P. florescence. J Therm Anal Calorim 104:131–139

    Article  CAS  Google Scholar 

  • Stitt M (1986) Limitation of photosynthesis by carbon metabolism. I. Evidence for excess electron-transport capacity in leaves carrying out photosynthesis in saturating light and CO2. Plant Physiol 81(4):1115–1122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relations between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wu CY, Terieu A, Radhakrishnan P, Kwork SF, Harris S, Zhang K, Wang JL, Wan JM, Zhai HQ, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogué S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Yuan LY, Shu S, Sun J, Guo SR, Takafumi T (2012) Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynth Res 112:205–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Basic Research Program of China (973 Program, No. 2009CB119000), National Natural Science Foundation of China (No. 31071831; No. 31272209), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and supported by the China Earmarked Fund for Modern Agro-industry Technology Research System (CARS-25-C-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Guo.

Additional information

Communicated by A. Krolicka.

L. Yuan and S. Zhu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Zhu, S., Li, S. et al. 24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3)2 stress. Acta Physiol Plant 36, 2845–2852 (2014). https://doi.org/10.1007/s11738-014-1612-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1612-y

Keywords

Navigation