Skip to main content
Log in

Starch and sugar accumulation in Sulla carnosa leaves upon Mg2+ starvation

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present work, magnesium deficiency effects were studied in Sulla carnosa plants grown in nutrient solution containing 1.50, 0.05, 0.01, and 0.00 mM Mg2+. After 5 weeks of treatment, fully expanded leaves were harvested to study their morphological and ultrastructural changes, as well as their carbohydrate, pigment, and Mg2+ concentrations. In control plants, leaves were well developed with remarkable green color. Down to 0.05 mM Mg2+, no chlorosis symptom was recorded, but below this concentration, mature leaves showed an appearance of interveinal chlorosis that was much more pronounced at 0.00 mM Mg2+ with the development of necrotic spots. Optima of chlorophyll a, chlorophyll b, and carotenoid concentrations were observed at 0.05 and 1.50 mM Mg2+; leaf magnesium concentration was severely reduced at 0.05 mM Mg2+. A significant decrease in pigment concentrations was noticed at 0.01 mM Mg2+, but the lowest values were recorded at 0.00 mM Mg2+. Enzymatic assays showed an increase in the accumulation of soluble sugars and starch with decreasing Mg2+ concentration. These results were in accordance with those of ultrastructural studies that revealed a marked alteration of chloroplasts in leaves of deficient plants. These chloroplasts were round and bigger as a result of a massive accumulation of oversized starch grains with disrupted thylakoids. As a whole, 1.50, 0.05, and 0.01 mM Mg2+ were found optimal, suboptimal, and deficient concentrations, respectively, the latter showing no significant difference with absolute Mg2+ absence (0.00 mM Mg2+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadía J, Morales F, Abadía A (2000) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183–192

    Article  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73

    Article  CAS  Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants-development, visual and analytical diagnosis. Gustav Fischer Verlag, Germany

    Google Scholar 

  • Bergmeyer HU, Bernt E (1974) Methods of Enzymatic Analysis. In: Bergmeyer HU (ed) Publisher, Academic Press, New York, pp 1177–1178

  • Beutler HO (1984) Methods of Enzymatic Analysis. In: Bergmeyer HU (ed) New York, Academic Press, pp 2–10

  • Bondar RJL, Mead DC (1974) Evaluation of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides in the hexokinase method for determining glucose in serum. Clin Chem 20:586–590

    CAS  PubMed  Google Scholar 

  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced magnesium and potassium-deficient leaves but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266

    Article  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994a) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994b) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95(8):4784–4788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding Y, Xu G (2011) Low magnesium with high potassium supply changes sugar partitioning and root growth pattern prior to visible magnesium deficiency in leaves of Rice (Oryza sativa L.). Am J Plant Sci 2:601–608

    Article  CAS  Google Scholar 

  • Ding Y, Luo W, Xu G (2006) Characterization of magnesium nutrition and interaction of magnesium and potassium in rice. Ann Appl Biol 149:111–123

    Article  CAS  Google Scholar 

  • Druege U, Zerche S, Kadner R, Ernst M (2000) Relation between nitrogen status, carbohydrate distribution and subsequent rooting of Chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann Bot 85(5):687–701

    Article  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2004) Mineral nutrition of plants: principles and perspectives. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Ericsson T, Kahr M (1995) Growth and nutrition of birch seedlings at varied relative addition rates of magnesium. Tree Physiol 15:85–93

    Article  CAS  PubMed  Google Scholar 

  • Fink S (1991) Structural changes in conifer needles due to Mg and K deficiency. Fert Res 27:23–27

    Article  CAS  Google Scholar 

  • Fischer ES, Bremer E (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation and net assimilation in Phaseolus vulgaris. Physiol Plant 89:271–276

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Grusak MA (1995) Whole-root iron (III)-reductase activity the life cycle of iron grown Pisum sativum L. (Fabaceae): relevance to the iron nutrition of developing seeds. Planta 197:111–117

    Article  CAS  Google Scholar 

  • Grusak MA, Deltrot S, Ntsika G (1990) Short-term effect of heat-girdles on source leaves of Vicia faba. J Exp Bot 41:1371–1377

    Article  Google Scholar 

  • Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 418:2153–2161

    Article  Google Scholar 

  • Hermans C, Jhonson GN, Strasser RJ, Verbruggen N (2004) Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355

    Article  CAS  PubMed  Google Scholar 

  • Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549

    Article  CAS  PubMed  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJM, Inzé D, Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:132–144

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonw. Bur. Hortic. Tech. Commun. 22:431–446

  • Jiang HM, Yang JC, Zhang JF (2007) Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ Pollut 147:750–756

    Article  CAS  PubMed  Google Scholar 

  • Jlassi A, Zorrig W, EL-Khouni A, Lakdhar A, Smaoui A, Abdely C, Rabhi M (2012) Phytodesalination of a moderately-salt-affected soil by Sulla carnosa. Int J Phytoremediation 15:398–404

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press Inc., London

    Google Scholar 

  • Marschner P (2012) Marshner’s mineral nutrition of higher plants. Academic Press Inc., London

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AD, Loganathan P, Payn TW, Tillman RW (1999) Effect of calcined magnesite on soil and Pinus radiata foliage magnesium in pumice soils of New Zealand. Aust J Soil Res 37:545–550

    Article  CAS  Google Scholar 

  • Morales MA, Sánchez-Blanco MJ, Olmos E, Torrecillas A, Alarcón JJ (1997) Changes in the growth, leaf water relations and cell ultrastructure in Argyranthemum coronopifolium plants under saline conditions. J Plant Physiol 153:174–180

    Article  Google Scholar 

  • Ntsika G, Deltrot S (1986) Changes in apoplastic and intracellular leaf sugars induced by the blocking of export in Vicia faba. Physiol Plant 68:145–153

    Article  CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  CAS  PubMed  Google Scholar 

  • Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M (2007) Interactive effects of salinity and iron deficiency in Medicago ciliaris. C R Biol 11:779–788

    Article  Google Scholar 

  • Rook F, Bevan MW (2003) Genetic approaches to understanding sugar-response pathways. J Exp Bot 54:495–501

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant J 26:421–433

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DD, Bensch K, Barnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. Cell Biol 17:19–58

    Article  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–332

    Article  CAS  PubMed  Google Scholar 

  • Southgate DAT (1976) Determination of food carbohydrates. Applied Science Publishers, London

    Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultras Res 26:31–43

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hort 108:7–14

    Article  Google Scholar 

  • Thivend P, Mercier C, Guilbot A (1972) Determination of starch with glucoamylase. In: Whistler RL, Wolfrom MC (eds) Methods of carbohydrate chemistry. Academic Press, New York, pp 100–105

    Google Scholar 

  • Thomson WW, Weier TE (1962) The fine structure of chloroplasts from mineral deficient leaves of Phaseolus vulgaris. Am J Bot 49:1047–1055

    Article  CAS  Google Scholar 

  • Vesk M, Possingham JV, Mercer FV (1966) The effect of mineral nutrient deficiencies on the structure of the leaf cells of Tomato, Spinach, and Maize. Aust J Bot 14:1–8

    Article  CAS  Google Scholar 

  • Zhang MP, Zhang CJ, Yu GH, Jiang YZ, Strasser RJ, Yuan ZY, Yang XS, Chen GX (2010) Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. J Plant Physiol 167:277–285

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Dielen V, Kinet JM, Boutry M (2000) Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth and male fertility. Plant Cell 12:535–546

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (LR10CBBC02) and the Department of Biology, University of Western Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokded Rabhi.

Additional information

Communicated by Z. Gombos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, N., Rabhi, M., Krol, M. et al. Starch and sugar accumulation in Sulla carnosa leaves upon Mg2+ starvation. Acta Physiol Plant 36, 2157–2165 (2014). https://doi.org/10.1007/s11738-014-1592-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1592-y

Keywords

Navigation