Skip to main content
Log in

Photosynthetic responses of ornamental passion flower hybrids to varying light intensities

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Wild species and hybrids of passion flower are cultivated in many countries for their ornamental value, and used for landscaping as indoor and garden plants. However, knowledge of physiological responses of passion flower to changes in light level is limited. In this paper, the relationship among low (25 %), medium (50 %), and high light level (75 %) and photosynthetic efficiency was investigated on hybrids of Passiflora ‘Aninha’ and Passiflora ‘Priscilla’. Hybrids of P. ‘Aninha’ grown under 25 % showed higher net photosynthetic rate and light-saturated rate of net photosynthesis, while for hybrids of P. ‘Priscilla’ the highest values were observed at 50 %. For P. ‘Aninha’ and P. ‘Priscilla’ the highest level of light (75 %) was not favorable as regards the maximization of stomatal conductance and contributed to reduction in transpiration rate. The values of maximal quantum yield of photosystem II photochemistry indicated efficient conversion of photosynthetically active radiation, being higher at 25 % light level and decreased progressively with the increase in light level. On the whole, leaf gas exchange parameters and chlorophyll fluorescence indicated higher photosynthetic efficiency at low- and medium-light levels for the two studied hybrids. Summing up, hybrids of P. ‘Aninha’ and P. ‘Priscilla’, showed adaptability to the shade, and could be used for landscaping projects of indoor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C a :

Atmospheric CO2 concentration

C i :

Intercellular CO2 concentration

C i/C a :

Intercellular to atmospheric CO2 concentration ratio

E :

Transpiration rate

ETR:

Electron transport rate

F o :

Minimal fluorescence yield of dark-adapted state

F oʹ:

Minimal fluorescence yield of light-adapted state

F m :

Maximal fluorescence yield of dark-adapted state

F mʹ:

Maximal fluorescence yield of light-adapted state

F s :

Steady-state fluorescence yield

F v :

Variable fluorescence

F v/F m :

Maximal quantum yield of PSII photochemistry

g s :

Stomatal conductance

LCP:

Light compensation point

P N :

Net photosynthetic rate

P Nmax :

Light-saturated net photosynthetic rate

PAR:

Photosynthetically active radiation

ppre:

Pluviometric precipitation

PSI:

Photosystem I

PSII:

Photosystem II

Q A :

Primary quinone acceptor of PSII

Q B :

Secondary quinone acceptor of PSII

qN :

Non-photochemical quenching coefficient

qP :

Photochemical quenching coefficient

R D :

Dark respiration rate

RH:

Relative humidity

SE:

Standard error

T air :

Air temperature

T leaf :

Leaf temperature

VPD:

Vapor pressure deficit

WUE:

Instantaneous water use efficiency (=P N/E)

WUEi :

Intrinsic water-use efficiency (=P N/g s)

α :

Apparent quantum efficiency

Ф PSII :

Effective quantum yield of PSII photochemistry

References

  • Abreu PP, Souza MM, Santos EA, Pires MV, Pires MM, Almeida A-AF (2009) Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. Euphytica 166:307–315

    Article  Google Scholar 

  • Aleric KM, Kirkman K (2005) Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments. Amer J Bot 92:682–689

    Article  Google Scholar 

  • Bacon MA (2004) Water use efficiency in plant biology? In: Bacon MA (ed) Water use efficiency in plant biology. CRC Press, Boca Raton, pp 1–26

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvst E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer-Verlag, New York, pp 17–47

    Google Scholar 

  • Bolhàr-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreider U, Lechner EG (1989) Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrument. Funct Ecol 3:497–514

    Article  Google Scholar 

  • Cao KF (2000) Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Can J Bot 78:1245–1253

    Google Scholar 

  • Cavichioli JC, Ruggiero C, Volpe CA, Paulo EM, Fagundes JL, Kasai FS (2006) Flowering and fruiting of yellow passion fruit submitted to artificial lighting, irrigation and shading. Rev Bras Frutic 28:92–96

    Article  Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapmanand Hall, New York, pp 5–55

    Chapter  Google Scholar 

  • Cornic G, Briantais JM (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183:178–184

    Article  CAS  PubMed  Google Scholar 

  • Craine JM, Reich PB (2005) Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytol 166:705–708

    Article  Google Scholar 

  • Critchley C (1998) Photoinhibition. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 264–272

    Google Scholar 

  • Ehleringer J (1981) Leaf absorptances of Mohave and Sonoran desert plants. Oecologia 102:366–370

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE (1995) Atmospheric CO2 and the ratio of intercellular to ambient CO2 levels in plants. Tree Physiol 15:105–111

    Article  PubMed  Google Scholar 

  • Evans R, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance. Plant, Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, Dubbe DR, Raschke K (1978) Gain of the feedback loop involving carbon dioxide and stomata. Plant Physiol 62:406–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng YL, Cao KF, Zhang JL (2004) Photosynthetic characteristics, dark respiration, and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances. Photosynthetica 42:431–437

    Article  CAS  Google Scholar 

  • Ferreira FR (1994) Germoplasma de Passiflora no Brasil. In: São José AR (ed) Maracujá: produção e mercado. DFZ/UESB, Vitória da Conquista, pp 24–26

    Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Guiselini C, Sentelhas PC, Oliveira RC, Prela A (2010) Greenhouse cover management: solar radiation effects on production and quality of a gerbera crop. Rev Bras Eng Agric Ambient 14:645–652

    Article  Google Scholar 

  • Guo XR, Cao KF, Xu ZF (2006) Acclimation to irradiance in seedlings of three tropical rain forest Garcinia species after simulated gap formation. Photosynthetica 44:193–201

    Article  Google Scholar 

  • Iqbal RM, Rao A-R, Rasul E, Wahid A (1997) Mathematical models and response functions in photosynthesis: an exponential model. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker Inc., New York, pp 803–810

    Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398

    Article  Google Scholar 

  • Juneau P, Green BR, Harrison PJ (2005) Simulation of pulse-amplitude-modulated (PAM) fluorescence: limitations of some PAM-parameters in studying environmental stress effects. Photosynthetica 43:75–83

    Article  CAS  Google Scholar 

  • Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Phys 42:313–349

    Article  CAS  Google Scholar 

  • Kubiske ME, Pregitzer KS (1996) Effects of elevated CO2 and light availability on the photosynthetic response of trees of contrasting shade tolerance. Tree Physiol 16:351–358

    Article  PubMed  Google Scholar 

  • Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Plant Physiol 110:903–912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larcher W (2000) Ecofisiologia vegetal. RIMA Artes e Textos, São Carlos

    Google Scholar 

  • Lemos Filho JP (2000) Photoinhibition in three species of cerrado (Annona crassifolia, Eugenia dysenterica and Campomanesia adamantium) in the dry season and rainy. Rev Bras Bot 23:45–50

    Article  Google Scholar 

  • Leverenz JW (1995) Shade shoot structure of conifers and the photosynthetic response to light at two CO2 partial pressures. Funct Ecol 9:413–421

    Article  Google Scholar 

  • Long SP, Postl WF, Bolhàr-Nordenkampf HR (1993) Quantum yield for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189:226–234

    Article  CAS  Google Scholar 

  • Lüttge U, Berg A, Fetene M, Nauke P, Dirk P, Beck E (2003) Comparative characterization of photosynthetic performance and water relations of native trees and exotic plantation trees in Ethiopian forest. Trees 17:40–50

    Article  Google Scholar 

  • Martínez-Ferri E, Manrique E, Valladares F, Balaguer E (2004) Winter photoinhibition in the field involves different processes in four co-occorring Mediterranean tree species. Tree Physiol 24:981–990

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mohamed GH, Binder WD, Gilles L (1995) Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scand J Forest Res 10:383–410

    Article  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakazono EM, Costa MC, Futatsugi K, Paulilo MTS (2001) Initial growth of Euterpe edulis Mart. in different light regimes. Rev Bras Bot 24:173–179

    Article  Google Scholar 

  • Peixoto M (2005) Problemas e perspectivas do maracujá ornamental. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Maracujá: germoplasma e melhoramento genético. Embrapa Cerrados, Planaltina, pp 457–464

    Google Scholar 

  • Pires MV, Almeida A-AF, Figueiredo AL, Gomes FP, Souza MM (2011) Photosynthetic characteristics of ornamental passion flowers grown under different light intensities. Photosynthetica 49:593–602

    Article  CAS  Google Scholar 

  • Ribas RF (2006) Plasticity and photosynthetic acclimation of tropical tree species. Dissertation, Universidade Federal de Viçosa

  • Sarijeva G, Knapp M, Lichtenthaler HK (2007) Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in cholorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol 164:950–955

    Article  CAS  PubMed  Google Scholar 

  • Silva WS (1993) Carbon and nitrogen assimilation in cacao (Theobroma cacao L.) leaves: influences of environmental stimuli and abscisic acid. Thesis, University of Bristol

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill Book Co., New York

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc., Sunderland, p 782

    Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • Thompson WA, Kriedemann PE, Craig IE (1992) Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. I. Growth, leaf anatomy and nutrient content. Aust J Plant Physiol 19:1–18

    Article  CAS  Google Scholar 

  • Tryee MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiol 88:0574–0580

    Article  Google Scholar 

  • Ulmer T, MacDougal JM (2004) Passiflora: passionflowers of the world. Timber Press, Portland

    Google Scholar 

  • Valladares F, Skillman JB, Pearcy RW (2002) Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation. Am J Bot 89:1275–1284

    Article  PubMed  Google Scholar 

  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Vanderplank J (2000) Passion flowers. The MIT Press, Cambridge

    Google Scholar 

  • Vanderplank J, Blanco EG, Feuillet C, Frank A, King L, Kugler E, Laurens C, MacDougal JM, Skimina T (2003) The international Passiflora registrer 2003. Passiflora Soc Int 1:1–36

    Google Scholar 

  • Vasconcellos MAS, Silva AC, Silva AC, Reis FO (2005) Ecofisiologia do maracujazeiro e implicações na exploração diversificada. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Maracujá: germoplasma e melhoramento genético. Embrapa Cerrados, Planaltina, pp 457–464

    Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant, Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Zanella F, Soncela R, Lima ALS (2006) Formation of yellow passion fruit seedlings under shading levels in JI-Paraná/RO. Cienc Agrotec 30:880–884

    Article  Google Scholar 

  • Zhang S, Ma K, Chen L (2003) Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environ Exp Bot 49:121–133

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marcelo Schramm Mielke, Angela Pierre Vitória and Jurandi Gonçalves de Oliveira for their valuable assistance in reviewing this manuscript. Thanks are due to FAPESB (Foundation for Research Support of the State of Bahia) for the scholarships Granted to PPA and financial assistance to MMS, and to CAPES (Coordination for Scientific Support for Post-Graduate Level Training) for the scholarships Granted to EAS. The second, third and fourth authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for the concession of a fellowship of scientific productivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarete Magalhães Souza.

Additional information

Communicated by U. Feller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, P.P., Souza, M.M., de Almeida, AA.F. et al. Photosynthetic responses of ornamental passion flower hybrids to varying light intensities. Acta Physiol Plant 36, 1993–2004 (2014). https://doi.org/10.1007/s11738-014-1574-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1574-0

Keywords

Navigation