Skip to main content

Advertisement

Log in

Agrobacterium-mediated genetic transformation of Withania somnifera using nodal explants

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Withania somnifera is an important medicinal plant and used to cure many diseases. Direct regeneration method was standardized for the nodal explants of W. somnifera. In this method, the maximum of 42.4 ± 2.68 shoots produced per explant was achieved at 1.5 mg l−1 BAP with 0.3 mg l−1 IAA in the second subculture. Transformation was performed in the nodal explants of W. somnifera via direct regeneration using Agrobacterium tumefaciens strain EHA105 that harbored a binary vector pGA492, which carrying kanamycin resistant (nptII), phosphinothricin resistant (bar) and an intron containing β-glucuronidase (gus-intron) genes. The sensitivity of nodal explants to kanamycin (300 mg l−1) was determined for the selection of transformed plants. Transformation was confirmed by histochemical β-glucuronidase (GUS) assay and amplification of the nptII gene by polymerase chain reaction (PCR). PCR and southern blot analyses confirmed the integration of nptII gene in the genome of W. somnifera and the transformation frequency of 3.16 % has been achieved. This is the first report on the genetic transformation of W. somnifera using nodal explants, which may aid in the transformation of any other character gene for improving therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMGT:

Agrobacterium-mediated genetic transformation

BAP:

6-Benzyl amino purine

IAA:

Indole-3-acetic acid

NAA:

Naphthalene acetic acid

IBA:

Indole-3-butyric acid

GA3 :

Gibberellic acid

CaMV:

Cauliflower mosaic virus

GUS :

β-Glucuronidase

nptII:

Neomycin phosphotransferase II

PCR:

Polymerase chain reaction

References

  • Abhyankar GA, Chinchanikar GS (1996) Response of Withania somnifera (L.) Dunal leaf explants in vitro. Phytomorphol 46:249–252

    Google Scholar 

  • Baburaj S, Gunasekaran K (1994) Regeneration of plants from leaf callus cultures of Solanum pseudocapsicum L. Ind J Expl Biol 32:141–143

    Google Scholar 

  • Bandyopadhyay M, Jha S, David T (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  CAS  PubMed  Google Scholar 

  • Bernatsky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    Google Scholar 

  • Budhiraja RD, Sudhir S (1987) Review of biological activity of withanolides. J Sci Ind Res 42:488–491

    Google Scholar 

  • Cao X, Liu Q, Rowland LJ, Hammerschlag FA (1998) GUS expression in blueberry (Vaccinium spp.): factors influencing Agrobacterium mediated gene transfer efficiency. Plant Cell Rep 18:266–270

    Article  CAS  Google Scholar 

  • Chaudhury D, Madanpotra S, Jaiwal R, Saini R, Ananda Kumar P, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Sci 172:692–700

    Article  CAS  Google Scholar 

  • Cucu N, Gabriela P, Gavrila L (2002) Genetically modified medicinal plants. II. Transfer and expression of a marker kanamycin resistance gene in Atropa belladonna plants. Rom Biotechnol Lett 7:869–874

    CAS  Google Scholar 

  • De Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaut WF (1996) Agrobacterium mediated transformation of apple (Malus domestica Borkh): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554

    Article  PubMed  Google Scholar 

  • Herrera-Estrella L, Simpson J, Martinez-Trujillo M (2005) Transgenic plants: an historical perspective. Methods Mol Biol 286:3–32

    CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Ishnava K, Patel T, Chauhan JB (2012) Study of genetic transformation of medicinal plants, Withania somnifera (L.) Dunal by Agrobacterium tumefaciens (MTCC-431). Asian J Exp Biol Sci 3(3):536–542

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones DH, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanungo S, Sahoo SL (2011) Direct organogenesis of Withania somnifera L. from apical bud. Int Res J Biotechnol 2:58–61

    Google Scholar 

  • Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration in garlic (Allium sativum L.) by Agrobacterium mediated gene transfer. Plant Cell Rep 19:989–993

    Article  CAS  Google Scholar 

  • Kulkarni AA, Thengane SR, Krishnamurthy KV (1996) Direct in vitro regeneration of leaf explants of Withania somnifera (L.). Plant Sci (Limerick) 119:1–2

    Article  Google Scholar 

  • Kulkarni AA, Thengane SR, Krishnamurthy KV (2000) Direct shoot regeneration from node, internode, hypocotyls and embryo explants of Withania somnifera. Plant Cell Tiss Org Cult 62:203–209

    Article  Google Scholar 

  • Kumar V, Chidambara Murthy KN, Bhamid S, Sudha CG, Ravishankar GA (2005) Genetically modified hairy roots of Withania somnifera Dunal: a potent source of rejuvenating principles. Rejuvenation Res 8(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Kumar OA, Jyothirmayee G, Tata SS (2011) Multiple shoot regeneration from nodal explants of Ashwagandha (L.) Dunal Withania somnifera. Asian J Exp Biol Sci 2:636–640

    Google Scholar 

  • Lee S-H, Lee D-G, Woo H-S, Lee K-W, Kim D-H, Kwak S-S, Kim J-S, Kim H, Ahsan N, Choi MS, Yang J-K, Lee B-H (2006) Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seed-derived callus tissues. Plant Sci 171:408–414

    Article  CAS  PubMed  Google Scholar 

  • Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): a review. Altern Med Rev 5:334–346

    CAS  PubMed  Google Scholar 

  • Mishra S, Sangwan RS, Bansal S, Sangwan NS (2013) Efficient genetic transformation of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma 250(2):451–458

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:73–497

    Article  Google Scholar 

  • Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of Withanolide A. J Integr Plant Biol 50:975–981

    Article  CAS  PubMed  Google Scholar 

  • Nayak SA, Kumar S, Satapathy K, Moharana A, Behera B, Barik DP, Naik SK (2013) In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physiol Plant 35:195–203

    Article  CAS  Google Scholar 

  • Pandey V, Misra P, Chaturvedi P, Mishra MK, Trivedi PK, Tuli R (2010) Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Plant Cell Rep 29:133–141

    Article  CAS  PubMed  Google Scholar 

  • Pawar PK, Maheshwari VL (2004) Agrobacterium rhizogenes mediated hairy root induction in two medicinally important members of family Solanaceae. Indian J Biotechnol 3(3):414–417

    Google Scholar 

  • Pawar PK, Teli NP, Bhalsing SR, Maheswari VL (2001) Micropropagation and organogenic studies in Withania somnifera (L.) Dunal. J Plant Biol 28:217–221

    Google Scholar 

  • Rani G, Grover IS (1999) In vitro callus induction and regeneration studies in Withania somnifera. Plant Cell Tiss Org Cult 57:23–27

    Article  Google Scholar 

  • Ray S, Jha S (1999) Withanolide synthesis in cultures of Withania somnifera transformed with Agrobacterium tumefaciens. Plant Sci 146:1–7

    Article  CAS  Google Scholar 

  • Ray S, Ghosh B, Sen S, Jha S (1996) Withanolide production by root cultures of Withania somnifera transformed with Agrobacterium rhizogenes. Planta Med 62:571–573

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Jaiwai PK (2005) Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium-mediated gene transfer into shoot apical meristem cultures. Plant Cell Rep 24:164–171

    Article  CAS  PubMed  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Uniyal GC, Tuli R, Sangwan NS (2007) Withanolide A biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera DUNAL), a main medicinal plant in Ayurveda. Chem Pharm Bull (Tokyo) 55:1371–1375

    Article  CAS  Google Scholar 

  • Selvaraj N (2002) In vitro culture and Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.). Ph.D Thesis, Bharathidasan University, Tiruchirappalli, Tamilnadu, India

  • Soniya EV, Das MR (2002) In vitro organogenesis and genetic transformation in popular Cucumis sativus L. through Agrobacterium tumefaciens. Ind J Expl Biol 40:329–333

    CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  • Tabei Y, Kanno T, Nishio T (1991) Regulation of organogenesis and somatic embryogenesis by auxin in melon Cucumis melo (L.). Plant Cell Rep 10:225–229

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Shukla YN, Sushilkumar T (1996) Ashwagandha [Withania somnifera (L.) Dunal (Solanaceae)]: a status report. J Med Arom Plant Sci 18:46–62

    Google Scholar 

  • Tsukazaki H, Kuginuki Y, Aida R, Suzuki T (2002) Agrobacterium-mediated transformation of a double haploid line of cabbage. Plant Cell Rep 21:257–262

    Article  CAS  Google Scholar 

  • Udayakumar R, Kasthurirengan S, Mariashibu TS, Rajesh M, Ramesh Anbazhagan V, Kim SC, Ganapathi A, Choi CW (2009) Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 10:2367–2382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udayakumar R, Kasthurirengan S, Mariashibu TS, Sahaya Rayan JJ, Kim SC, Choi CW, Ganapathi A (2010a) Antioxidant activity of phenolic compounds extracted from the roots and leaves of Withania somnifera (L.) from different geographical locations in India. Func Plant Sci Biotech 4:28–33

    Google Scholar 

  • Udayakumar R, Kasthurirengan S, Vasudevan A, Mariashibu TS, Sahaya Rayan JJ, Choi CW, Ganapathi A, Kim SC (2010b) Antioxidant effect of dietary supplement Withania somnifera L. reduce blood glucose levels in alloxan-induced diabetic rats. Plant Foods Hum Nutr 65:91–98

    Article  CAS  PubMed  Google Scholar 

  • Udayakumar R, Choi CW, Kim KT, Kim SC, Kasthurirengan S, Mariashibu TS, Sahaya Rayan JJ, Ganapathi A (2013) In vitro plant regeneration from epicotyl explant of Withania somnifera (L.) Dunal. J Med Plants Res 7:43–52

    CAS  Google Scholar 

  • Uma Devi P, Sharada AC, Solomon FE (1993) Anti-tumor and radiosensitizing effects of Withania somnifera (Ashwagandha) on a transplantable mouse tumor sarcoma 180. Ind J Exp Biol 31:607–611

    Google Scholar 

  • Vasudevan A, Selvaraj N, Ganapathi A, Choi CW (2007) Agrobacterium-mediated Genetic Transformation in Cucumber (Cucumis sativus L.). Am J Biochem Biotechnol 3(1):24–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the facility from Bharathidasan University, (CSIR-Govt. of India) India and Pai Chai University, Korea and by the grant (111074-3) from Bio-industry Technology Development Program of Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea through the IPET.

Conflict of interest

Authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andy Ganapathi or Chang Won Choi.

Additional information

Communicated by J.-H. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udayakumar, R., Kasthurirengan, S., Mariashibu, T.S. et al. Agrobacterium-mediated genetic transformation of Withania somnifera using nodal explants. Acta Physiol Plant 36, 1969–1980 (2014). https://doi.org/10.1007/s11738-014-1572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1572-2

Keywords

Navigation