Advertisement

Acta Physiologiae Plantarum

, Volume 36, Issue 5, pp 1085–1093 | Cite as

Transcriptional regulation of Arabidopsis thaliana WRKY genes under interaction with beneficial fungus Trichoderma atroviride

  • Jorge Sáenz-Mata
  • Fatima Berenice Salazar-Badillo
  • Juan Francisco Jiménez-BremontEmail author
Original Paper

Abstract

Plants are associated with a wide range of microorganisms, and these interactions induce changes in both the plant and microorganism. Transcription factors play an important role in the regulation of large numbers of genes associated to plant–microbe response. WRKY transcription factors have been involved in the responses to plant–pathogen interactions, but little is known about WRKY transcription factors in beneficial plant–microbe interactions. In this study, the expression patterns of Arabidopsis thaliana WRKY genes were evaluated during the interaction with the beneficial fungus Trichoderma atroviride. Eight WRKY genes, AtWRKY8, AtWRKY33, AtWRKY38, AtWRKY42, AtWRKY54, AtWRKY57, AtWRKY60 and AtWRKY70, were analyzed by quantitative RT-PCR. These WRKY genes were found differentially expressed in a time-dependent manner during T. atroviride interaction. Our data suggest that T. atroviride induces the expression of positive regulators in jasmonic acid-mediated pathway such as AtWRKY8, AtWRKY33, AtWRKY38, AtWRKY42 and AtWRKY60, while salicylic acid pathway regulated by AtWRKY70 and AtWRKY54, could be activated at later stages of the interaction, when the fungus is fully established in the plant roots. In addition, Trichoderma treatment regulates the expression of WRKY genes such as AtWRKY57, AtWRKY60 and AtWRKY33 related to response to abiotic stresses. In this sense, WRKY transcription factors regulation suggests a complex signaling network in this beneficial plant–microbe interaction.

Keywords

Arabidopsis thaliana WRKY transcription factors Trichoderma atroviride Gene expression Salicylic acid pathway Jasmonic acid and ethylene pathways 

Notes

Acknowledgments

This work was supported by the CONACYT (Investigación Ciencia Básica 2008-103106) funding.

References

  1. Agarwal P, Reddy MP, Chikara J (2011) WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38:3883–3896PubMedCrossRefGoogle Scholar
  2. An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121Google Scholar
  3. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NHT, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Nielsen HB, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bryan AB (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295PubMedCentralPubMedCrossRefGoogle Scholar
  5. Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma–plant root colonization: escaping early plant defense responses and activation of the antioxidant a machinery for saline stress tolerance. PLoS Pathog 9:e1003221PubMedCentralPubMedCrossRefGoogle Scholar
  7. Champion A, Jouannic S, Guillon S, Mockaitis K, Krapp A, Picaud A, Simanis V, Kreis M, Henry Y (2004) AtSGP1, AtSGP2 and MAP4Kα are nucleolar plant proteins that can complement fission yeast mutants lacking a functional SIN pathway. J Cell Sci 117:4265–4275PubMedCrossRefGoogle Scholar
  8. Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130(2):577–590PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554–3566PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010a) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chen L, Lai Z, Yu D (2010b) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant Microbe Interact 23:558–565PubMedCrossRefGoogle Scholar
  12. Contreras-Cornejo HE, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592PubMedCentralPubMedCrossRefGoogle Scholar
  13. Contreras-Cornejo HE, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730PubMedCentralCrossRefGoogle Scholar
  15. Delgado-Sánchez P, Ortega-Amaro MA, Rodríguez-Hernández AA, Jiménez-Bremont JF, Flores J (2010) Further evidence from the effect of fungi on breaking opuntia seed dormancy. Plant Signal Behav 5:1229–1230PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37PubMedCrossRefGoogle Scholar
  17. Donoso EP, Bustamante RO, Caru M, Niemeyer HM (2008) Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl Environ Microbiol 74:1412–1417PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371PubMedCrossRefGoogle Scholar
  19. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206PubMedCrossRefGoogle Scholar
  20. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species––opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  21. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25PubMedCrossRefGoogle Scholar
  22. Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105PubMedCrossRefGoogle Scholar
  23. Jiang Y, Lianga G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388PubMedCrossRefGoogle Scholar
  24. Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant cell 18:3289–3302PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371PubMedCentralPubMedCrossRefGoogle Scholar
  26. Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biocontrol 53:667–683CrossRefGoogle Scholar
  27. Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chena Z (2011) Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23:3824–3841PubMedCentralPubMedCrossRefGoogle Scholar
  28. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331PubMedCentralPubMedCrossRefGoogle Scholar
  29. Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491PubMedCrossRefGoogle Scholar
  30. Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252PubMedCrossRefGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  32. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol 48:395–417PubMedCrossRefGoogle Scholar
  33. Maeo K, Hayashi S, Kojima-Suzuki H, Morikami A, Nakamura K (2001) Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem 65:2428–2436PubMedCrossRefGoogle Scholar
  34. Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221PubMedCrossRefGoogle Scholar
  35. Morán-Diez E, Rubio B, Dominguez S, Hermosa R, Monte E, Nicolas C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620PubMedCrossRefGoogle Scholar
  36. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258PubMedCrossRefGoogle Scholar
  38. Sáenz-Mata J, Jiménez-Bremont JF (2012) HR4 gene is induced in the ArabidopsisTrichoderma atroviride beneficial interaction. Int J Mol Sci 13:9110–9128PubMedCentralPubMedCrossRefGoogle Scholar
  39. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26CrossRefGoogle Scholar
  40. Segarra G, Casanova E, Bellido D, Odena M, Oliveira E, Trillas E (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952PubMedCrossRefGoogle Scholar
  41. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedCrossRefGoogle Scholar
  42. Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environ 36:909–919PubMedCrossRefGoogle Scholar
  43. Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354PubMedCrossRefGoogle Scholar
  44. Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498PubMedCrossRefGoogle Scholar
  45. Van Verk MC, Bol JF, Linthorst HJM (2011) Prospecting for genes involved in transcriptional regulation of plant defense, a bioinformatics approach. BMC Plant Biol 11:1–12CrossRefGoogle Scholar
  46. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123PubMedCentralPubMedCrossRefGoogle Scholar
  47. Wang Q, Wang M, Zhang X, Hao B, Kaushik SK, Pan Y (2011) WRKY gene family evolution in Arabidopsis thaliana. Genetica 139:973–983PubMedCrossRefGoogle Scholar
  48. Xu X, Che NC, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326PubMedCentralPubMedCrossRefGoogle Scholar
  49. Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 18(3):279–287CrossRefGoogle Scholar
  50. Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242CrossRefGoogle Scholar
  51. Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66PubMedCrossRefGoogle Scholar
  52. Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–12PubMedCentralPubMedCrossRefGoogle Scholar
  53. Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2014

Authors and Affiliations

  • Jorge Sáenz-Mata
    • 2
  • Fatima Berenice Salazar-Badillo
    • 1
  • Juan Francisco Jiménez-Bremont
    • 1
    Email author
  1. 1.División de Biología MolecularInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMéxico
  2. 2.Facultad de Ciencias BiológicasUniversidad Juárez del Estado de DurangoGómez PalacioMéxico

Personalised recommendations