Advertisement

Acta Physiologiae Plantarum

, Volume 35, Issue 11, pp 3271–3275 | Cite as

Light stress suppresses the accumulation of epimedins A, B, C, and icariin in Epimedium, a traditional medicinal plant

  • Shaohua Zeng
  • Yilan Liu
  • Ying WangEmail author
Short Communication

Abstract

Epimedium is well-known in China and East Asia due to high content of flavonoid derivatives, including icariin, epimedin A, epimedin B, and epimedin C, hereafter designated as bioactive components, which have been extensively utilized to cure many diseases. So far, the molecular mechanism of the bioactive components biosynthesis remains unclear. In the present study, the effect of light stress (24 h illumination) on the accumulation of bioactive components and the expression of flavonoid genes in Epimedium was investigated. Under light stress, the structural genes CHS1, CHI1, F3H, FLS, DFR1, DFR2, and ANS were remarkably up-regulated while CHS2 and F3′H were significantly down-regulated. For transcription factors, the expression of Epimedium MYB7 and TT8 were increased while Epimedium GL3, MYBF, and TTG1 expression were depressed. Additionally, the content of bioactive components was significantly decreased under light stress. Our results suggested that the decrease of bioactive compounds may be attributed to transcripts of late genes (DFRs and ANS) increased to a higher level than that of early genes (FLS and CHS1).

Keywords

Bioactive components Epimedium Flavonoid biosynthesis Light stress 

Abbreviations

ANS

Anthocyanin synthase

CHI

Chalcone isomerase

CHS

Chalcone synthase

DFR

Dihydroflavonol 4-reductase

F3′H

Flavanone 3′ hydroxylase

F3H

Flavanone 3 hydroxylase

FLS

Flavonol synthase

HPLC

High performance liquid chromatography

PCR

Polymerase chain reaction

qRT-PCR

Quantitative real-time PCR

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270340 and 31200225), Instrument Developing Project of the Chinese Academy of Sciences (YZ201227), the South China Botanical Garden Startup Fund (201039), and the Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-EW-J-20).

References

  1. Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos RCH, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5(12):e1000777. doi: 10.1371/journal.pgen.1000777 PubMedCrossRefGoogle Scholar
  2. Ballester A, Molthoff J, de Vos R, BtL Hekkert, Orzaez D, Fernández-Moreno J-P, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152(1):71–84. doi: 10.1104/pp.109.147322 PubMedCrossRefGoogle Scholar
  3. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380. doi: 10.1111/j.1365-313X.2004.02138.x PubMedCrossRefGoogle Scholar
  4. Cai W, Huang J, Zhang S, Wu B, Kapahi P, Zhang X, Shen Z (2011) Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS One 6(12):e28835. doi: 10.1371/journal.pone.0028835 PubMedCrossRefGoogle Scholar
  5. Chiu LW, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236(4):1153–1164. doi: 10.1007/s00425-012-1665-3 PubMedCrossRefGoogle Scholar
  6. Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530. doi: 10.1104/pp.109.142059 PubMedCrossRefGoogle Scholar
  7. Davis MC, Fiehn O, Durnford DG (2013) Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii. Plant Cell Environ 36(7):1391–1405. doi: 0.1111/pce.12071 CrossRefGoogle Scholar
  8. deVetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11(11):1422–1434. doi: 10.1101/gad.11.11.1422 CrossRefGoogle Scholar
  9. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids: a gold mine for metabolic engineering. Trends Plant Sci 4(10):394–400. doi: 10.1016/S1360-1385(99)01471-5 PubMedCrossRefGoogle Scholar
  10. Fahlman BM, Krol ES (2009) UVA and UVB radiation-induced oxidation products of quercetin. J Photochem Photobiol B: Biol 97(3):123–131. doi: 10.1016/j.jphotobiol.2009.08.009 CrossRefGoogle Scholar
  11. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. doi: 10.1111/j.1365-313X.2007.03373.x PubMedCrossRefGoogle Scholar
  12. Huang W, Sun W, Lv H, Xiao G, Zeng S, Wang Y (2012) Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum. Int J Mol Sci 14(1):594–610. doi: 10.3390/ijms14010594 PubMedCrossRefGoogle Scholar
  13. Islam NM, Yoo HH, Lee MW, Dong M, Park YI, Jeong HS, Kim D-H (2008) Simultaneous quantitation of five flavonoid glycosides in Herba Epimedii by high-performance liquid chromatography–tandem mass spectrometry. Phytochem Anal 19(1):71–77. doi: 10.1002/pca.1018 PubMedCrossRefGoogle Scholar
  14. Ma H, He X, Yang Y, Li M, Hao D, Jia Z (2011) The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol 134(3):519–541. doi: 10.1016/j.jep.2011.01.001 PubMedCrossRefGoogle Scholar
  15. Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096. doi: 10.1104/pp.104.058032 PubMedCrossRefGoogle Scholar
  16. Ming L, Chen K, Xian CJ (2013) Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 228(3):513–521. doi: 10.1002/jcp.24158 PubMedCrossRefGoogle Scholar
  17. Schaart JG, Dubos C, Romero De La Fuente I, van Houwelingen AMML, de Vos RCH, Jonker HH, Xu W, Routaboul J-M, Lepiniec L, Bovy AG (2012) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol 197:454–467. doi: 10.1111/nph.12017 PubMedCrossRefGoogle Scholar
  18. Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12(9):1619–1631. doi: 10.2307/3871178 PubMedGoogle Scholar
  19. Tong J, Zhang Q, Huang X, Fu X, Qi S, Wang Y, Hou Y, Sheng J, Sun Q (2011) Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS One 6(3):e16781. doi: 10.1371/journal.pone.0016781 PubMedCrossRefGoogle Scholar
  20. Xu Y, Li Z, Yuan L, Zhang X, Lu D, Huang H, Wang Y (2013) Variation of epimedins A, C and icariin in ten representative populations of Epimedium brevicornu Maxim, and implications for utilization. Chem Biodives 10(4):711–721. doi: 10.1002/cbdv.201100424 CrossRefGoogle Scholar
  21. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe B, Wang Y (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11(1):94. doi: 10.1186/1471-2164-11-94 PubMedCrossRefGoogle Scholar
  22. Zeng S, Liu Y, Zou C, Huang W, Wang Y (2013) Cloning and characterization of phenylalanine ammonia-lyase in medicinal Epimedium species. Plant Cell Tiss Organ 113(2):257–267. doi: 10.1007/s11240-012-0265-z CrossRefGoogle Scholar
  23. Zhang H, Yang T, Li Z, Wang Y (2008) Simultaneous extraction of epimedin A, B, C and icariin from Herba Epimedii by ultrasonic technique. Ultrason Sonochem 15(4):376–385. doi: 10.1016/j.ultsonch.2007.09.002 PubMedCrossRefGoogle Scholar
  24. Zhao H, Sun J, Fan M, Fan L, Zhou L, Li Z, Han J, Wang B, Guo D (2008) Analysis of phenolic compounds in Epimedium plants using liquid chromatography coupled with electrospray ionization mass spectrometry. J Chromatogr A 1190(1–2):157–181. doi: 10.1016/j.chroma.2008.02.109 PubMedGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2013

Authors and Affiliations

  1. 1.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations