Skip to main content
Log in

α-Amylase gene expression during kernel development in relation to pre-harvest sprouting in wheat and triticale

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Triticale, an artificial hybrid of wheat and rye, combines the good yield and nutritional value of wheat with good disease resistance of rye. Despite these advantages, pre-harvest sprouting (PHS) can seriously limit triticale production. Although different field and laboratory tests exist, it remains difficult to breed for PHS tolerance and mechanisms behind PHS are still elusive. As part of an integrated study focussing on the genetic and physiological background of PHS, a multidisciplinary approach was pursued monitoring α-amylase, an enzyme that is involved in PHS, both at transcriptional and post-transcriptional levels during kernel development. Plants of PHS-tolerant and PHS-susceptible varieties of wheat and triticale were grown under controlled conditions from flowering to harvest. At regular time points, kernels were harvested for germination tests, α-amylase analysis and RNA extraction. RNA extracts were used in an RT-qPCR assay to obtain expression profiles of the α-Amy1 and α-Amy2 genes. The α-amylase activity profiles during kernel development corresponded well with results from previous reports. The relative gene expression profiles revealed that α-Amy2 peaked in the beginning of kernel development, while α-Amy1 increased towards harvest maturity. Furthermore, the relative α-Amy1 expression was higher in the PHS-susceptible varieties compared to the PHS-tolerant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C q :

Quantification cycle

DM:

Dry matter

DPA:

Days post anthesis

IEF:

Isoelectric focusing

LMA:

Late maturity α-amylase activity

PHS:

Pre-harvest sprouting

pI:

Isoelectric point

PM:

Physiological maturity

RT-qPCR:

Real-time reverse transcriptase polymerase chain reaction

References

  • Appleford N, Evans D, Lenton J, Gaskin P, Croker S, Devos K, Phillips A, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582. doi:10.1007/s00425-005-0104-0

    Article  PubMed  CAS  Google Scholar 

  • Appleford N, Wilkinson MD, Ma Q, Evans DJ, Stone MC, Pearce SP, Powers SJ, Thomas SG, Jones HD, Phillips AL, Hedden P, Lenton JR (2007) Decreased shoot stature and grain α-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat. J Exp Bot 58:3213–3226. doi:10.1093/jxb/erm166

    Article  PubMed  CAS  Google Scholar 

  • Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T (2005) Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869. doi:10.1093/pcp/pci091

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Biddulph TB, Plummer JA, Setter TL, Mares DJ (2008) Seasonal conditions influence dormancy and preharvest sprouting tolerance of wheat (Triticum aestivum L.) in the field. Field Crop Res 107:116–128. doi:10.1016/j.fcr.2008.01.003

    Article  Google Scholar 

  • Black M, Bewley JD, Halmer P (eds) (2006) The encyclopaedia of seeds: science, technology and uses. CAB International, Wallingford

    Google Scholar 

  • Cejudo FJ, Cubo MT, Baulcombe DC (1995) Amyl expression during wheat seed germination. Plant Sci 106:207–213. doi:10.1016/0168-9452(95)04077-8

    Article  CAS  Google Scholar 

  • Chen KG, An YQC (2006) Transcriptional responses to gibberellin and abscisic acid in barley aleurone. J Integr Plant Biol 48:591–612. doi:10.1111/j.1744-7909.2006.00270.x

    Article  CAS  Google Scholar 

  • Derycke V, Haesaert G, Latré J, Struik PC (2002) Relation between laboratory sprouting resistance tests and field observations in triticale (x Triticosecale Wittmack) genotypes. In: Proceedings of the 5th international triticale symposium, Poland, pp 123–133

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. doi:10.1111/j.1469-8137.2006.01787.x

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Law CN, Chojecki AJ, Kempton RA (1983) Genetic control of α-amylase production in wheat. Theor Appl Genet 64:309–316

    Article  CAS  Google Scholar 

  • Gao F, Jordan MC, Ayele BT (2012) Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat (Triticum aestivum L.). Plant Biotechnol J 10:465–476. doi:10.1111/j.1467-7652.2012.00682.x

    Article  PubMed  CAS  Google Scholar 

  • Gerjets T, Scholefield D, Foulkes MJ, Lenton JR, Holdsworth MJ (2010) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. J Exp Bot 61:597–607. doi:10.1093/jxb/erp329

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cadenas A, Zentella R, Walker-Simmons MK, Ho T-HD (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signalling molecules. Plant Cell 13:667–679. doi:10.1105/tpc.13.3.667

    PubMed  CAS  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pl α-amylase gene promoter. Plant Cell 7:1879–1891. doi:10.1105/tpc.7.11.1879

    PubMed  CAS  Google Scholar 

  • Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV (2002) Gibberellin signalling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol 129:191–200. doi:10.1104/pp.010918

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  Google Scholar 

  • Lin R, Horsley RD, Schwarz PB (2008) Associations between caryopsis dormancy, alpha-amylase activity, and pre-harvest sprouting in barley. J Cereal Sci 48:446–456. doi:10.1016/j.jcs.2007.10.009

    Article  CAS  Google Scholar 

  • Lindblom H, Jonsson JO, Larssonraznikiewicz M, Salomonsson L (1989) Starch-degrading enzymes in some triticale, wheat and rye cultivars during kernel development. Swed J Agric Res 19:65–72

    CAS  Google Scholar 

  • Lunn GD, Major BJ, Kettlewell PS, Scott RK (2001) Mechanisms leading to excess alpha-amylase activity in wheat (Triticum aestivum L.) grain in the UK. J Cereal Sci 33:313–329. doi:10.1006/jcrs.2001.0369

    Article  CAS  Google Scholar 

  • Mares D, Mrva K (2008) Late-maturity α-amylase: low falling number in wheat in the absence of preharvest sprouting. J Cereal Sci 47:6–17. doi:10.1016/j.jcs.2007.01.005

    Article  CAS  Google Scholar 

  • Mares D, Oettler G (1991) α-Amylase activity in developing triticale grains. J Cereal Sci 13:151–160

    Article  CAS  Google Scholar 

  • Mrva K, Mares D (1999) Regulation of high pI α-amylase synthesis in wheat aleurone by a gene(s) located on chromosome 6B. Euphytica 109:17–23. doi:10.1023/A:1003696026410

    Article  CAS  Google Scholar 

  • Mrva K, Mares D (2001) Induction of late maturity alpha-amylase in wheat by cool temperature. Aust J Agric Res 52:477–484

    Article  CAS  Google Scholar 

  • Mrva K, Wallwork M, Mares DJ (2006) α-Amylase and programmed cell death in aleurone of ripening wheat grains. J Exp Bot 57:877–885. doi:10.1093/jxb/erj072

    Article  PubMed  CAS  Google Scholar 

  • Oettler G (1990) Alpha-amylase activity and falling number during grain development in primary triticales and their parents. In: Proceedings of the 2nd international triticale symposium, Brasil, pp 483–486

  • Pagano EA, Benech-Arnold RL, Wawrzkiewicz M, Steinbach HS (1997) Alpha-amylase activity in developing Sorghum caryopses from sprouting resistant and susceptible varieties. The role of ABA and GAs on its regulation. Ann Bot 79:13–17

    Article  CAS  Google Scholar 

  • Paulsen GM, Auld AS (2004) Preharvest sprouting in cereals. In: Benech-Arnold R, Sanchez R (eds) Handbook of seed Physiology: applications to agriculture. Food Products Press, New York, pp 199–219

    Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613. doi:10.1104/pp.103.036293

    Article  PubMed  CAS  Google Scholar 

  • Rentzsch S, Podzimska D, Voegele A, Imbeck M, Müller K, Linkies A, Leubner-Metzger G (2012) Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases. Planta 235:137–151. doi:10.1007/s00425-011-1501-1

    Article  PubMed  CAS  Google Scholar 

  • Tjin Wong Joe AF, Summers RW, Lunn GD, Atkinson MD, Kettlewell PS (2005) Pre-maturity α-amylase and incipient sprouting in UK winter wheat, with special reference to the variety Rialto. Euphytica 143:265–269. doi:10.1007/s10681-005-7877-x

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034–research0034.11. doi:10.1186/gb-2002-3-7-research0034

    Article  PubMed  Google Scholar 

  • Walker-Simmons M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    Article  PubMed  CAS  Google Scholar 

  • Xiao SH, Zhang XY, Yan CS, Lin H (2002) Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: an overview of the current strategy. Euphytica 126:35–38. doi:10.1023/A:1019679924173

    Article  CAS  Google Scholar 

  • Zentella R, Yamauchi D, Ho THD (2002) Molecular dissection of the gibberellin/abscisic acid signalling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14:2289–2301. doi:10.1105/tpc.003376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research of Sarah De Laethauwer was financed by the research funding of University College Ghent. We are also grateful to the Institute for Agricultural and Fisheries Research—Plant Sciences Unit for their expertise and technical assistance. In addition, we would like to thank Dr. Mark D. Wilkinson for his cooperation on the Phadebas assay and Dr. Kolumbina Mrva for her tips on the IEF assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah De Laethauwer.

Additional information

Communicated by A. Gniazdowska-Piekarska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Laethauwer, S., De Riek, J., Stals, I. et al. α-Amylase gene expression during kernel development in relation to pre-harvest sprouting in wheat and triticale. Acta Physiol Plant 35, 2927–2938 (2013). https://doi.org/10.1007/s11738-013-1323-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1323-9

Keywords

Navigation