Skip to main content
Log in

Micropropagation of Hohenbergia penduliflora (A. Rich.) Mez. for sustainable production of plant proteases

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Hohenbergia penduliflora (A. Rich.) Mez. inhabits the protected ecological area of Cunagua Highland, Ciego de Ávila, Cuba. The availability of this plant for experimental purposes is exceedingly limited. Tissue cultured plants of this specie, would be useful for propagation purposes. Experiments were carried out to optimize the micropropagation process from the disinfection of fruits to ex vitro hardening of regenerated plantlets. The best results were obtained when seeds were disinfected with 2 % (v:v) sodium hypochlorite for 20 min and placed in vitro for 45 days for seed germination. Tissue cultured shoots (1 cm) with vertical wounds in the basal region (5 mm long) were placed in a medium containing Murashige and Skoog (MS) salts, 100 mg l−1 myo-inositol, 0.1 mg l−1 thiamine-HCl, 30 g l−1 sucrose, 8.8 μM 6-benzyladenine (BA) and 1.6 μM naphthalene acetic acid (NAA). Shoots were proliferated for 45 days to obtain 8.21 new shoots per explant; they were subsequently divided and rooted on a medium containing 1.6 μM NAA for 30 days. For ex vitro hardening, plastic trays containing 82 cm3 of filter-cake-sugarcane ashes were used; 100 % survival rate was recorded. After 6 months of hardening, plants were established ex vitro and ready for protease extraction. Comparisons between protein contents, proteolytic activities and specific proteolytic activities of extracts from stems of macro- and micropropagated plants were acquired. Tissue cultured stems showed statistically lower figures which is why Ethrel was tested here to increase proteolytic activity in micropropagated plant stems. After Ethrel applications, protein contents, proteolytic activities and specific proteolytic activities of extracts from stems were the three main indicators recorded. However, other biochemical effects of Ethrel were also evaluated, such as, levels of chlorophyll pigments, malondialdehyde and other aldehydes; and superoxide dismutase, and guaiacol peroxidase activities. Rising concentrations of Ethrel (0, 1.5, 3.0, 4.5 and 6.0 mg l−1) decreased protein contents at 72 h but increased proteolytic and specific proteolytic activities of stem extracts. Ethrel was effective in increasing proteolytic activity in in vitro culture-derived plant stems, at a level higher than in field-grown plant stems. Moreover, Ethrel increased superoxide dismutase and guaiacol peroxidase-specific activities in leaves; and decreased chlorophyll pigments. Ethrel did not affect levels of malondialdehyde and other aldehydes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeles F, Morgan P, Saltveit M (1992) Roles and physiological effects of ethylene in plant physiology: dormancy, growth and development. In: Abeles M, Saltveit M (eds) Ethylene in plant biology. Academic Press, San Diego, pp 120–181

    Chapter  Google Scholar 

  • Alves GM, Vesco LLD, Guerra MP (2006) Micropropagation of the Brazilian endemic bromeliad Vriesea reitzii trough nodule clusters culture. HortScience 110:2004–2007

    Google Scholar 

  • Anson M (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Genet Physiol 22:79

    Article  CAS  Google Scholar 

  • Aranda-Peres AN, Pinheiro A (2009) Adjustment of mineral elements in the culture medium for the micropropagation of three Vriesea Bromeliads from the Brazilian Atlantic Forest: the importance of calcium. HortScience 44(1):106–112

    Google Scholar 

  • Azcon-Bieto J, Talon M (1993) Fisiología y Bioquímica Vegetal. McGraw-Hill Interamericana, España, pp 537–553

    Google Scholar 

  • Bailey A, Light N (1989) Connective tissue. In: Bayley A (ed) Meat and meat products. Elsevier Science Publishers Ltd, London, pp 213–214

    Google Scholar 

  • Barth H, Guseo A, Klein R (2005) In vitro study on the immunological effect of bromelain and trypsin on mononuclear cells from humans. Eur J Med Res 10:325–331

    PubMed  CAS  Google Scholar 

  • Bartholomew DP, Malézieux E, Sanewski G, Sinclair E (2002) Inflorescence fruit development and yield. In: Bartholomew P, Rohrbach KG (eds) The pineapple botany production and uses. CABI Publishing, UK, pp 167–202

    Google Scholar 

  • Benucci I, Garzillo A, Esti M (2011) Bromelain from pineapple stem in alcoholic-acidic buffers for wine application. Food Chem 124:1349–1353

    Article  CAS  Google Scholar 

  • Benzing D (1978) Germination and early establishment of Tillandsia circinnata Schelecht (Bromeliaceae) on some of its hosts and other supports in Southern Florida. Selbyana 5:95–106

    Google Scholar 

  • Beuth J (2008) Proteolytic enzyme therapy in evidence-based complementary oncology: fact or fiction? Integr Cancer Ther 7(4):311–316

    Article  PubMed  CAS  Google Scholar 

  • Bhui K, Tyagi S, Prakash B, Shukla Y (2010) Pineapple bromelain induces autophagy, facilitating apoptotic response in mammary carcinoma cells. BioFactors 36:474–482

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidsinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation–induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Büchert AM, Civello PM, Martinez GA (2011) Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J Plant Physiol 168:337–343

    Article  PubMed  CAS  Google Scholar 

  • Carneiro L, Araújo R, Brito G, Fonseca M, Costa A, Crocomo OJ, Mansur E (1999) In vitro regeneration from leaf explants of Neoregelia cruenta (R. Graham) L.B. Smith, an endemic bromeliad from eastern Brazil. Plant Cell Tiss Org Cult 55:79–83

    Article  Google Scholar 

  • Chobotova K, Vernallis AB, Majid FAA (2010) Bromelain’s activity and potential as an anti-cancer agent: current evidence and perspectives. Cancer Lett 290:148–156

    Article  PubMed  CAS  Google Scholar 

  • Couvillon GA (1998) Rooting responses to different treatments. Acta Hortic 227:187–196

    Google Scholar 

  • Danso K, Ayeh K, Oduro V, Amiteye S, Amoatey H (2008) Effect of 6-benzylaminopurine and naphthalene acetic acid on in vitro production of MD2 pineapple planting materials. World Appl Sci J 3(4):614–619

    Google Scholar 

  • Daquinta M, Benegas R (1997) Brief review of tissue culture of pineapple. Pineapple News 3:7–9

    Google Scholar 

  • Daquinta M, Espinosa P, Escalona M, Rodríguez R, Guerra M (2001) Bromeliad micropropagation in temporary immersion system. J Bromeliad Soc 51:80–85

    Google Scholar 

  • De Proft M, Mekers O, Jacobs L, De Greef JA (1986) Influence of light and flowering inducing chemicals on the quality of Bromeliaceae inflorescence. Acta Hort 181:141–146

    Google Scholar 

  • Del Río LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed  Google Scholar 

  • Distefano S, Palma JM, McCarthy I, del Río LA (1999) Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta 209:308–313

    Article  PubMed  CAS  Google Scholar 

  • Droste A, da Silva AM, Matos AV, Almeida JW (2005) In vitro culture of Vriesea gigantea and Vriesea philippocoburgii: two vulnerable bromeliads native to Southern Brazil. Braz Arch Biol Technol 48(5):717–722

    Article  Google Scholar 

  • Duarte P, Coelho V, Ferreira L, Paiva R, Pasqual M (2009) In vitro propagation of Nidularium fulgens Lem. Interciencia 34(8):593–596

    Google Scholar 

  • Dukovski D, Bernatzky R, Han S (2006) Flowering induction of Guzmania by ethylene. Sci Horticult 181:141–146

    Google Scholar 

  • Eckardt N (2009) A new chlorophyll degradation pathway. Plant Cell 21(3):700

    Article  PubMed  CAS  Google Scholar 

  • Engwerda CR, Andrew D, Ladhams A, Mynott T (2001) Bromelain modulates T and B cell immune responses in vitro and in vivo. Cell Immunol 210:66–75

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Feller U (1994) Senescence and protein degradation in leaf segment of young winter wheat: influence of leaf age. J Exp Bot 45:103–109

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • García D, Vidigal F, Pelacani C, da Silva A, da Silva C, Ferreira J (2009) Micropropagation and in vitro conservation of Neoglaziovia variegata (Arr. Cam.) Mez, a fibber producing bromeliad from Brazil. Braz Arch Biol Technol 52:923–932

    Article  Google Scholar 

  • Ge TD, Sui FG, Bai LP, Lu YY, Zhou GS (2006) Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agr Sci China 5:291–298

    Article  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 449–658

    Google Scholar 

  • Gepstein S, Thimann KV (1981) The role of ethylene in the senescence of oat leaves. Plant Physiol 68:349–354

    Article  PubMed  CAS  Google Scholar 

  • González-Rábade N, Badillo-Corona J, Aranda-Barradas J, Oliver-Salvador M (2011) Production of plant proteases in vivo and in vitro. Biotechnol Adv 29:983–996

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilization in barley and wheat. Plant Biol (Stuttg) 1:37–49

    Article  CAS  Google Scholar 

  • Grudkowska M, Zagdanska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51(3):609–624

    PubMed  CAS  Google Scholar 

  • Guerra M, Dal Vesco L (2010) Strategies for the Micropropagation of Bromeliads. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants: methods in molecular biology. Humana Press, New York, pp 47–66

    Chapter  Google Scholar 

  • Hamad AM, Taha RM (2008) The effect of different hormones and incubation on in vitro proliferation of pineapple (Ananas comosus L.) Merr. Cv. Smooth Cayenne shoot-tip culture. Pak J Biol Sci 11:386–391

    Article  PubMed  CAS  Google Scholar 

  • Headon D, Walsh G (1994) The industrial production of enzymes. Biotech Adv 12(4):635–646

    Article  CAS  Google Scholar 

  • Heath RL, Packer J (1968) Photoperoxidation in isolated chloroplast: I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hernández M, Chávez M, Márquez M, Rodríguez G, Santos R, González J, Carvajal C (1997) Process to obtain bromelain from pineapple stems. Cuban Patent C12N 9/50

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Ann Rev Plant Biol 57:55–77

    Article  CAS  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807(8):977–988

    Article  PubMed  CAS  Google Scholar 

  • Hosoki T, Asahira T (1980) In vitro propagation of bromeliads in liquid culture. HortScience 5:603–604

    Google Scholar 

  • Ishida H, Shimizu S, Makino A, Mae T (1998) Light-dependent fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxilase/oxygenase in chloroplasts isolated from wheat leaves. Planta 204:305–309

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, AI-Juburi HJ, Zhao CX, Shao HB, Rajaram P (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  CAS  Google Scholar 

  • Jones BL (2005) Endoproteases of barley and malt. J Cereal Sci 42(2):139–156

    Article  CAS  Google Scholar 

  • Jones JB, Murashige T (1974) Tissue culture propagation of Aechmea fasciata and other bromeliads. Proc Int Plant Prop Soc 24:117–126

    Google Scholar 

  • Jones ML, Larsen PB, Woodson WR (1995) Ethylene-regulated expression of a carnation cysteine protease during flower petal senescence. Plant Mol Biol 28:505–512

    Article  PubMed  CAS  Google Scholar 

  • Jones ML, Chaffin GS, Eason JR, Clark DG (2005) Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. J Exp Bot 56(420):2733–2744

    Article  PubMed  CAS  Google Scholar 

  • Kleef R, Delohery T, Boubjerg D (1996) Selective modulation of cell adhesion molecules on lymphocytes by bromelain. Pathobiology 64(6):339–346

    Article  PubMed  CAS  Google Scholar 

  • La Valle J, Krinsky D, Hawkins E (2000) Natural therapeutics pocket guide. Lexi-Comp, USA, pp 1–75

    Google Scholar 

  • Landgraf PRC, Paiva PDO (2009) Produção de mudas para jardim no estado de Minas Gerais. Ciên Agrotec 33:127–131

    Article  Google Scholar 

  • Lawrie R (1985) Meat science. Pergamon Press, London, pp 195–197

    Google Scholar 

  • Leipner J, Ilen F, Saller R (2001) Therapy with proteolytic enzymes in rheumatic disorders. BioDrugs 15:779–789

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y (1988) Plant senescence processes and free radicals. Free Rad Biol Med 5:39–49

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Ann Rev Plant Biol 58:115–136

    Article  CAS  Google Scholar 

  • Lin CY, Yeh DM (2008) Potassium nutrition affects leaf growth, anatomy and macroelements of Guzmania. HortScience 43:146–148

    Google Scholar 

  • Lopes A, Henz E, Bortoluzzi E, Arzivenko JP (2008) Micropropagation of Dyckia maritima Baker: Bromeliaceae. Iheringia Ser Bot 63:135–138

    Google Scholar 

  • Lotti T (1993) Controlled clinical studies of bromeline in the treatment of urogenital inflammation. Drugs 46:144–146

    Article  PubMed  Google Scholar 

  • Martin C, Thimann K (1972) Role of protein synthesis in the senescence of leaves II. The influence of amino acids on senescence. Plant Physiol 50:432–437

    Article  PubMed  CAS  Google Scholar 

  • Martínez DE, Costa ML, Guiamet JJ (2008) Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol (Stuttg) 1:15–22

    Article  CAS  Google Scholar 

  • McCord J, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein. J Inorg Biochem 244:6049–6055

    CAS  Google Scholar 

  • Meir S, Philosoph-Hadas S, Aharoni N (1992) Ethylene-increased accumulation of fluorescent lipid-peroxidation products detected during senescence of parsley by a newly developed method. J Am Soc Hort Sci 117(1):128–132

    CAS  Google Scholar 

  • Mekers O, De Prof M, Jacobs L (1983) Prevention of unwanted flowering of ornamental Bromeliaceae by growth regulating chemicals. Acta Hort 137:217–223

    Google Scholar 

  • Melis G (1990) Clinical experience with metoxybutropate vs. bromelain in the treatment of female pelvic inflammation. Minerva Ginecol 42:309–312

    PubMed  CAS  Google Scholar 

  • Mercier H, Kerbauy GB (1995) Importance of tissue culture technique for conservation of endangered Brazilian bromeliads from Atlantic rain forest canopy. Selbyana 16(2):147–149

    Google Scholar 

  • Metzig C, Grabowska E, Eckert K, Rehse K, Maurer H (1999) Bromelain proteases reduce human platelet aggregation in vitro, adhesion to bovine endothelial cells and thrombus formation in rat vessels in vivo. In Vivo 13:7–12

    PubMed  CAS  Google Scholar 

  • Miller A (1982) Improved sausage casing. US Patent 3 666 844

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Müntz K (2007) Protein dynamics and proteolysis in plant vacuoles. J Exp Bot 58(10):2391–2407

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mynott TL, Crossett B, Prathalingam SR (2002) Proteolytic inhibition of Salmonella enterica serovar typhimurium-induced activation of the mitogen-activated protein kinases ERK and JNK in cultured human intestinal cells. Inf Imm 70(1):86–95

    Article  CAS  Google Scholar 

  • Nievola CC, Graus JE, Freschi L, Souza BM, Mercier H (2005) Temperature determines the occurrence of CAM or C3 photosynthesis in pineapple plantlets grown in vitro. In Vitro Cell Dev Biol Plant 41:832–837

    Article  CAS  Google Scholar 

  • Noodén LD, Guiamet JJ, John I (1997) Senescence mechanism. Physiol Plant 101:746–753

    Article  Google Scholar 

  • Otsuki N, Dang N, Kumagai E, Kondo A, Iwata S, Morimoto C (2010) Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 127:760–767

    Article  PubMed  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, del Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57(8):1747–1758

    Article  PubMed  CAS  Google Scholar 

  • Pascual MR, Pereda CM, Pérez R (1983) Inverse correlation between estrogens receptor and peroxidase activity in human mammary tumor. Neoplasma 30:611

    PubMed  CAS  Google Scholar 

  • Pérez A, Carvajal C, Trejo S, Torres MJ, Martin MI, Lorenzo JC, Natalucci CL, Hernández M (2010) Penduliflorain I: a cysteine protease isolated from Hohenbergia penduliflora (A.Rich.) Mez (Bromeliaceae). Protein J 29:225–233

    Article  PubMed  CAS  Google Scholar 

  • Pickens K, Wolf J, Affolter JM, Wetzstein H (2006) Adventitious bud development and regeneration in Tillandsia eizii. In Vitro Cell Dev Biol Plant 42:348–353

    Article  CAS  Google Scholar 

  • Pierik RLM, Sprenkels PA (1991) Micropropagation of Tillandsia cyanea. J Brom Soc 41:9–12

    Google Scholar 

  • Pierik RLM, Steegmans H, Hendriks J (1984) Vegetative propagation of Nidularium fulgens Lem. in vitro. Netherl J Agric Sci 32:101–106

    Google Scholar 

  • Pompelli MF, Guerra MP (2005) Micropropagation enables the mass propagation and conservation of Dyckia distachya Hassler. Crop Breed Appl Biotechnol 5:117–126

    Google Scholar 

  • Porras RJ (1991) Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic and marine organisms including recalcitrant algae. In: Scheer H (ed) Chemistry of Chlorophyll. CRC Press, Boca Raton, p 320

    Google Scholar 

  • Ransberger K, Stauder G (1993) Process of using catabolic enzymes for induction of tumor necrosis factor (TNF). US Patent 5223406

  • Rauh W (1990) The bromeliad lexicon. Blandford, London

    Google Scholar 

  • Rech Filho A, Dal Vesco LL, Nodari RO, Lischka RW, Muller CV, Guerra MP (2005) Tissue culture for the conservation and mass propagation of Vriesea reitzii Leme and Costa, a bromeliad threatened of extinction from the Brazilian Atlantic Forest. Biodiv Conserv 14:1799–1808

    Article  Google Scholar 

  • Robinson DG, Oliviusson P, Hinz G (2005) Protein sorting to the vacuoles of plants: a critical appraisal. Traffic 6:615–625

    Article  PubMed  CAS  Google Scholar 

  • Rundel PW, Dillon MO (1998) Ecological patterns in the Bromeliaceae of the lemas formations of Coastal Chile and Peru. Plant Syst Evol 212:261–278

    Article  Google Scholar 

  • Salas C, Gomes M, Hernandez M, Lopes M (2008) Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry 69:2263–2269

    Article  PubMed  CAS  Google Scholar 

  • Salisbury FB, Ross C (1992) Fisiología Vegetal. Wadsworth Publishing, California

    Google Scholar 

  • Santos D, Tamaki V, Nievola C (2010) In vitro propagation of the ornamental bromeliad Acanthostachys strobilacea (Schult. f.) Klotzsch via nodal segments. In Vitro Cell Dev Biol Plant 46(6):524–529

    Article  Google Scholar 

  • Sauget JS (1946) The Cuban Flora. Cultural, S.A, Havana, pp 284–297

  • Silva EN, Ferreira-Silva SL, Fontenelea AV, Ribeirob RV, Viégasc RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Smart C (1994) Gene expression during leaf senescence. New Phytol 126:419–448

    Article  CAS  Google Scholar 

  • Stepek G, Buttle DJ, Duce IR, Lowe A, Behnke JM (2005) Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology 130(2):203–211

    Article  PubMed  CAS  Google Scholar 

  • Sullivan GA, Calkins CR (2010) Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Sci 85:730–734

    Article  PubMed  CAS  Google Scholar 

  • Suni M, Cano A, Vadillo G (2001) Preliminary evaluation of Puya raimondii Harms (Bromeliaceae) germination. Rev Peruan Biol 8:53–59

    Google Scholar 

  • Tamaki V, Mercier H (2007) Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus). J Plant Physiol 164:1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Tamer MI, Mavituna F (1996) Protease from callus and cell suspension cultures of Onopordum turcicum (Compositae). Biotehcnol Lett 18:361–366

    Article  CAS  Google Scholar 

  • Tang B, Xu SZ, Zou XL, Zheng YL, Qiu FZ (2010) Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of water logging-tolerant and water logging-sensitive maize genotypes at seedling stage. Agric Sci China 9:651–661

    Article  CAS  Google Scholar 

  • Toledo-Aceves T, Wolf J (2008) Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas. Mexico. Biotropica 40:246–250

    Article  Google Scholar 

  • Turnbull C, Sinclair E, Anderson K, Nissen R, Shorter A, Lanham T (1999) Routes of ethephon uptake in pineapple (Ananas comosus) and reasons for failure of flower induction. J Plant Growth Reg 18:145–152

    Article  CAS  Google Scholar 

  • Vervaeke R, Wouters J, Deroose R, De Proft MP (2004a) Semi in vitro pollen tube growth of Aechmea fasciata. Plant Cell, Tiss Org Cult 75:67–73

    Article  Google Scholar 

  • Vervaeke R, Wouters J, Deroose R, De Proft MP (2004b) Division of the germinative nucleus in cultured pollen tubes of the Bromeliaceae. Plant Cell, Tiss Org Cult 76:17–28

    Article  CAS  Google Scholar 

  • Viestra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32:275–302

    Article  Google Scholar 

  • Xu HW, Lu Y, Tong SY, Song FB (2011) Lipid peroxidation, antioxidant enzyme activity and osmotic adjustment changes in husk leaves of maize in black soils region of Northeast China. African J Agric Res 6(13):3098–3102

    Google Scholar 

  • Yamamoto H, Tabata M (1989) Correlation of papain-like enzyme production with laticifer formation in somatic embryos of papaya. Plant Cell Rep 8:251–254

    Article  CAS  Google Scholar 

  • Yanes E, González J, Rodríguez R (2000) A technology of acclimatization of pineapple vitro plants. Pineapple News 7:24

    Google Scholar 

  • Yang L, Mickelson S, See D, Blake T, Fischer A (2004) Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization. J Exp Bot 55(408):2607–2616

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang Z, Li J, Wu L, Guo J, Ouyang L, Xia Y, Huang X, Pang X (2011) Correlation of leaf senescence and gene expression/activities of chlorophyll degradation enzymes in harvested Chinese flowering cabbage (Brassica rapa var. parachinensis). J Plant Physiol 168(17):2081–2087

    Article  PubMed  CAS  Google Scholar 

  • Zuraida AR, Nurul-Shahnadz AH, Harteeni A, Roowi S, Che-Radziah CMZ, Sreeramanan S (2011) A novel approach for rapid micropropagation of maspine pineapple (Ananas comosus L.) shoots using liquid shake culture system. African. J Biotech 10(19):3859–3866

    CAS  Google Scholar 

Download references

Acknowledgments

The Cuban Ministry of Higher Education and the Ministry of Science, Technology and Environment supported this research. We express gratitude to Mrs. Leyanes Diaz and Mr. René C. Rodríguez for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Lorenzo.

Additional information

Communicated by M. Capuana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, A., Laudat, T., Mora, M. et al. Micropropagation of Hohenbergia penduliflora (A. Rich.) Mez. for sustainable production of plant proteases. Acta Physiol Plant 35, 2525–2537 (2013). https://doi.org/10.1007/s11738-013-1288-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1288-8

Keywords

Navigation