Skip to main content
Log in

Assessment of paraquat genotoxicity on barley (Hordeum vulgare L.) seedlings using molecular and biochemical parameters

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of exposure of barley seedlings to different concentration (10−6 to 10−3 mol/l) of paraquat on seed germination, root length, antioxidant enzyme activities and randomly amplified polymorphic DNA (RAPD) profiles were investigated. The results revealed that malondialdehyde content significantly increased by exposing paraquat in a concentration-dependent manner (p < 0.05). A significant increase in peroxidase and catalase activities in seedlings was observed with increased concentration of paraquat, and then decreased when the value reached 10−3 mol/l, whereas the activities of superoxide dismutase gradually increased with increasing paraquat concentration. Germination and root elongation also decreased with the increase of paraquat concentration. On the other hand, alterations of DNA in barley seedlings were detected using RAPD technique. The changes occurring in RAPD profiles of seedlings following paraquat treatment included loss of bands found in DNA of control seedlings and appearance of new bands. The results of this study showed that paraquat induced DNA damage in a dose-dependent manner and the root cells of barley showed a defense against paraquat-induced oxidative stress by enhancing their antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal S, Pandey V (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifoli. Biol Plant 48:555–560

    Article  CAS  Google Scholar 

  • Aksakal O, Aygun-Erturk F, Sunar S, Bozari S, Agar G (2013) Assessment of genotoxic effects of 2,4-dichlorophenoxyacetic acid on maize by using RAPD analysis. Ind Crop Prod 42:552–557

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascobate peroxidase a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Bozari S, Aksakal O (2012) Application of random amplified polymorphic DNA (RAPD) to detect genotoxic effect of trifluralin on maize (Zea mays). Drug Chem Toxicol. doi:10.3109/01480545.2012.660948

    PubMed  Google Scholar 

  • Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46

    Article  PubMed  CAS  Google Scholar 

  • Cantavenera MJ, Catanzaro I, Loddo V, Palmisano L, Sciandrello G (2007) Photocatalytic degradation of paraquat and genotoxicity of its intermediate products. J Photochem Photobiol A 185:277–282

    Article  CAS  Google Scholar 

  • Chen Q, Niu Y, Zhang R, Guo H, Gao Y, Li Y, Liu R (2010) The toxic influence of paraquat on hippocampus of mice: involvement of oxidative stress. Neurotoxicology 31:310–316

    Article  PubMed  CAS  Google Scholar 

  • D’souza UJA, Zain A, Raju S (2005) Genotoxic and cytotoxic effects in the bone marrow of rats exposed to a low dose of paraquat via the dermal route. Mutat Res 581:187–190

    Article  PubMed  Google Scholar 

  • Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Sanchez Navarro A, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 27:1110–1122

    Article  PubMed  CAS  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and development characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  PubMed  CAS  Google Scholar 

  • Holgrem A (2003) Redox regulation of genes and cell function. Crit Rev Oxid Stress Ag 2:102–111

    Google Scholar 

  • Jalel CA, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R (2007) Calcium chloride effects on salinity induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. C R Biol 330:674–683

    Article  Google Scholar 

  • Jovtchev G, Gateva S, Stergios M, Kulekova S (2009) Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro. Environ Toxicol 25(3):295–303

    Article  Google Scholar 

  • Lin A, Zhang X, Zhu Y-G, Zhao F-J (2008) Arsenate-induced toxicity: effects on antioxidative enzymes and DNA damage in Vicia faba. Environ Toxicol Chem 27:413–419

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Yang YS, Zhou QX, Xie LJ, Li P, Sun T (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Yang YS, Li PJ, Zhou QX, Xie LJ, Han YP (2009) Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. J Hazard Mater 161:878–883

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi-Bardbori A, Ghazi-Khansari M (2008) Alternative electron acceptors: proposed mechanism of paraquat mitochondrial toxicity. Environ Toxicol Pharmacol 26:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ Pollut 98:233–238

    Article  CAS  Google Scholar 

  • Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180:65–77

    Article  PubMed  CAS  Google Scholar 

  • Xue-mei Q, Pei-jun L, Wan L, Li-jing X (2006) Multiple biomarkers response in maize (Zea mays L.) during exposure to copper. J Environ Sci 18(6):1182–1188

    Article  Google Scholar 

  • Ye Y, Tam NFY, Wong YS, Lu CY (2003) Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environ Exp Bot 49:209–221

    Article  Google Scholar 

  • Zega G, Candiani S, Groppelli S, De Bernardi F, Pennati R (2010) Neurotoxic effect of the herbicide paraquat on ascidian larvae. Environ Toxicol Pharmacol 29:24–31

    Article  PubMed  CAS  Google Scholar 

  • Zhiyia R, Haowen Y (2004) A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio. Ecotoxicol Environ Saf 58:96–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozkan Aksakal.

Additional information

Communicated by E. Schleiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksakal, O. Assessment of paraquat genotoxicity on barley (Hordeum vulgare L.) seedlings using molecular and biochemical parameters. Acta Physiol Plant 35, 2281–2287 (2013). https://doi.org/10.1007/s11738-013-1265-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1265-2

Keywords

Navigation