Acta Physiologiae Plantarum

, Volume 35, Issue 7, pp 2183–2191 | Cite as

Elastic properties of the growth-controlling outer cell walls of maize coleoptile epidermis

  • Andrei Lipchinsky
  • Elena I. Sharova
  • Sergey S. Medvedev
Original Paper


The effects of tensile stress and temperature on cell wall elasticity have been investigated in the outer cell walls of coleoptile epidermis of 4- and 6-day-old Zea mays L. seedlings. The change in tensile stress from 6 to 40 MPa caused the increase in cell wall elastic modulus from 0.4 to 3 GPa. Lowering the temperature from 30 to 4 °C resulted in instantaneous and reversible cell wall elongation of 0.3–0.5 ‰. At a given temperature and stress level, the wall elastic modulus of 6-day-old seedlings tended to be 30 % higher than that of 4-day-old plants. The relationship between cell wall elasticity and mechanical stress indicated that the stress distribution within the cell wall is highly uneven. The analysis of the effect of temperature on cell wall elastic strain showed that structural differences between crystalline and amorphous load-bearing polymers were not the only cause of the uneven stress distribution. Based on the results obtained by Hejnowicz and Borowska-Wykręt (Planta 220:465–473, 2005), we suggested that the uneven stress distribution is partially related to the stress gradient between inner and outer layers of the cell wall.


Zea mays Plant cell wall Epidermis Modulus of elasticity Extension growth 



We gratefully acknowledge Professor Svetlana M. Bauer for valuable discussions. We are immensely indebted to Alexandra N. Ivanova, Kirill N. Demchenko and Pavel A. Zykin for assistance with the microscopic investigations. We thank anonymous reviewers for their comments, which greatly helped to improve the manuscript. The work was partially carried out at the Core Facilities “Molecular and Cell Technologies” (SPbSU) and “Cell and Molecular Technologies in Plant Science” (Komarov Botanical Institute RAS, St.-Petersburg). This work was supported by Russian Foundation for Basic Research (Grant No. 11-04-00701).


  1. Chaplain MAJ (1993) The strain energy function of an ideal plant cell wall. J Theor Biol 163:77–97. doi: 10.1006/jtbi.1993.1108 CrossRefGoogle Scholar
  2. Dintwa E, Jancsóka P, Mebatsion HK (2011) A finite element model for mechanical deformation of single tomato suspension cells. J Food Eng 103:265–272. doi: 10.1016/j.jfoodeng.2010.10.023 CrossRefGoogle Scholar
  3. Dumais J, Forterre Y (2012) Vegetable dynamics: the role of water in plant movements. Annu Rev Fluid Mech 44:453–478. doi: 10.1146/annurev-fluid-120710-101200 CrossRefGoogle Scholar
  4. Franks PJ, Buckley TN, Shope JC, Mott KA (2001) Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiol 125:1577–1584PubMedCrossRefGoogle Scholar
  5. Gardner WR, Ehlig CF (1965) Physical aspects of the internal water relations of plant leaves. Plant Physiol 40:705–710PubMedCrossRefGoogle Scholar
  6. Hejnowicz Z (1997) Graviresponses in herbs and trees: a major role for the redistribution of tissue and growth stresses. Planta 203:S136–S146. doi: 10.1007/PL00008102 PubMedCrossRefGoogle Scholar
  7. Hejnowicz Z (2011) Plants as mechano-osmotic transducers. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Signal Commun Plants 9:241–267. doi: 10.1007/978-3-642-19091-9_10
  8. Hejnowicz Z, Borowska-Wykręt D (2005) Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220:465–473. doi: 10.1007/s00425-004-1353-z PubMedCrossRefGoogle Scholar
  9. Hejnowicz Z, Sievers A (1996) Tissue stresses in organs of herbaceous plants. III. Elastic properties of the tissues of sunflower hypocotyl and origin of tissue stresses. J Exp Bot 47:519–528CrossRefGoogle Scholar
  10. Hejnowicz Z, Rusin A, Rusin T (2000) Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J Plant Growth Regul 19:31–44PubMedGoogle Scholar
  11. Hohl M, Schopfer P (1992) Cell-wall tension of the inner tissues of the maize coleoptile and its potential contribution to auxin-mediated organ growth. Planta 188:340–344. doi: 10.1007/BF00192800 CrossRefGoogle Scholar
  12. Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099. doi: 10.1126/science.1213100 PubMedCrossRefGoogle Scholar
  13. Kutschera U (1992) The role of the epidermis in the control of elongation growth in stems and coleoptiles. Bot Acta 105:246–252Google Scholar
  14. Kutschera U (2004) The biophysical basis of cell elongation and organ maturation in coleoptiles of rye seedlings: implications for shoot development. Plant Biol 6:158–164. doi: 10.1055/s-2004-815734 PubMedCrossRefGoogle Scholar
  15. Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409. doi: 10.1016/j.jplph.2007.08.002 PubMedCrossRefGoogle Scholar
  16. Lepeschkin VV (1907) Studies on the osmotic properties and turgor of plant cells (in Russian). Notes Imp Acad Sci Ser 8 22(2):56–61Google Scholar
  17. Niklas KJ, Paolillo DJ (1997) The role of the epidermis as a stiffening agent in Tulipa (Liliaceae) stems. Am J Bot 84:735PubMedCrossRefGoogle Scholar
  18. Nilsson SB, Hertz CH, Falk S (1958) On the relation between turgor pressure and tissue rigidity. II. Physiol Plantarum 11:818–837. doi: 10.1111/j.1399-3054.1958.tb08275.x CrossRefGoogle Scholar
  19. Peaucelle A, Braybrook SA, Guillou LL et al (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726. doi: 10.1016/j.cub.2011.08.057 PubMedCrossRefGoogle Scholar
  20. Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–665. doi: 10.1093/aob/77.6.657 PubMedCrossRefGoogle Scholar
  21. Pitt RE, Davis DC (1984) Finite element analysis of fluid-filled cell response to external loading. Trans Am Soc Agric Eng 27:1976–1983Google Scholar
  22. Potocka I, Szymanowska-Pułka J, Karczewski J, Nakielski J (2011) Effect of mechanical stress on Zea root apex. I. Mechanical stress leads to the switch from closed to open meristem organization. J Exp Bot 62:4583–4593. doi: 10.1093/jxb/err169 PubMedCrossRefGoogle Scholar
  23. Pritchard J, Wyn Jones RG, Tomos AD (1988) Control of wheat root growth. The effects of excision on growth, wall rheology and root anatomy. Planta 176:399–405. doi: 10.1007/BF00395421 CrossRefGoogle Scholar
  24. Steudle E, Jeschke WD (1983) Water transport in barley roots. Planta 158:237–248. doi: 10.1007/BF01075260 CrossRefGoogle Scholar
  25. Steudle E, Zimmermann U, Lüttge U (1977) Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol 59:285–289PubMedCrossRefGoogle Scholar
  26. Tomos AD, Steudle E, Zimmermann U, Schulze E-D (1981) Water relations of leaf epidermal cells of Tradescantia virginiana. Plant Physiol 68:1135–1143PubMedCrossRefGoogle Scholar
  27. Tyerman SD, Oats P, Gibbs J, Dracup M, Greenway H (1989) Turgor-volume regulation and cellular water relations of Nicotiana tabacum roots grown in high salinities. Austr J Plant Physiol 16:517–531CrossRefGoogle Scholar
  28. Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451. doi: 10.1016/j.cell.2012.02.048 PubMedCrossRefGoogle Scholar
  29. Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci B Polym Phys 40:1095–1102. doi: 10.1002/polb.10166 CrossRefGoogle Scholar
  30. Wang CX, Wang L, Thomas CR (2004) Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Bot 93:443–453. doi: 10.1093/aob/mch062 PubMedCrossRefGoogle Scholar
  31. Wu H-I, Sharpe PJH (1979) Stomatal mechanics II: material properties of guard cell walls. Plant Cell Environ 2:235–244. doi: 10.1111/j.1365-3040.1979.tb00075.x CrossRefGoogle Scholar
  32. Wu H-I, Spence RD, Sharpe PJH, Goeschl JD (1985) Cell wall elasticity: I. a critique of the bulk elastic modulus approach and an analysis using polymer elastic principles. Plant Cell Environ 8:563–570. doi: 10.1111/j.1365-3040.1985.tb01694.x PubMedCrossRefGoogle Scholar
  33. Wu H-I, Spence RD, Sharpe PJH (1988) Plant cell wall elasticity II: polymer elastic properties of the microfibrils. J Theor Biol 133:239–253. doi: 10.1016/S0022-5193(88)80008-0 CrossRefGoogle Scholar
  34. Zhang X-Q, Wei PC, Xiong YM, Yang Y, Chen J, Wang XC (2011) Overexpression of the Arabidopsis alpha-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Rep 30:27–36. doi: 10.1007/s00299-010-0937-2 PubMedCrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2013

Authors and Affiliations

  • Andrei Lipchinsky
    • 1
  • Elena I. Sharova
    • 1
  • Sergey S. Medvedev
    • 1
  1. 1.Department of Plant Physiology and BiochemistrySaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations