Skip to main content
Log in

Increased Na+ and Cl accumulation induced by NaCl salinity inhibits cotyledonary reserve mobilization and alters the source-sink relationship in establishing dwarf cashew seedlings

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We studied the NaCl-induced changes in cotyledons and the embryonic axis of establishing dwarf cashew (Anacardium occidentale) seedlings. The salt stress reduced the growth of dwarf cashew seedlings, and this response was related to the inhibition of cotyledonary reserve depletion. Lipid mobilization was inhibited by NaCl due to reduced lipase activity in the emerging and establishing seedlings. Additionally, there was reduced transient starch accumulation in the cotyledons of the salt-stressed seedlings that was associated with lower starch synthase activity at the early developmental stages and inhibited amylolytic and starch phosphorylase activities at the established seedling stage. The NaCl-induced changes in lipid and starch metabolism influenced the soluble sugar content in the cotyledons. Protein mobilization was inhibited by NaCl, and we observed the accumulation of amino acids and the inhibition of proteolytic activity in the cotyledons of the salt-stressed established seedlings. Salinity significantly reduced the free amino acid and reducing sugar contents in the embryonic axes of both emerged and established seedlings, whereas the non-reducing sugar content was affected by this stress only in the established seedlings. The Na+ and Cl contents progressively increased in the cotyledons and embryonic axis of the seedlings as the salinity increased. We conclude that salt stress inhibits dwarf cashew seedling establishment by inhibiting the mobilization of reserves, an inhibition that was related to increased Na+ and Cl accumulation in the cotyledons. Additionally, these toxic ions reduced the sink strength of the embryonic axis with regard to the products of cotyledonary reserve mobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu CEB, Prisco JT, Nogueira ARC, Bezerra MA, Lacerda CF, Gomes-Filho E (2008) Physiological and biochemical changes occurring in dwarf-cashew seedlings subjected to salt stress. Braz J Plant Physiol 20:105–118. doi:10.1590/S1677-04202008000200003

    Article  Google Scholar 

  • Alvarez-Pizarro JC, Gomes-Filho E, Lacerda CF, Alencar NLM, Prisco JT (2009) Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings. Plant Growth Regul 59:125–135. doi:10.1007/s10725-009-9395-7

    Article  CAS  Google Scholar 

  • Ashraf M, Wahid S (2000) Time-course changes in organic metabolites and mineral nutrients in germinating maize seeds under salt (NaCl) stress. Seed Sci Technol 28:641–656

    Google Scholar 

  • Ashraf MY, Afaf R, Qureshi MS, Sarwar G, Naqvi MH (2002) Salinity induced changes in α-amylase and protease activities and associated metabolism in cotton varieties during germination and early seedling growth stages. Acta Physiol Plant 24:37–44. doi:10.1007/s11738-002-0019-3

    Article  CAS  Google Scholar 

  • Ashraf M, Zafar R, Ashraf MY (2003) Time-course changes in the inorganic and organic components of germinating sunflower achenes under salt (NaCl) stress. Flora 198:26–36. doi:10.1078/0367-2530-00073

    Article  Google Scholar 

  • Baethgen WE, Alley MM (1989) A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun Soil Sci Plant 20:961–969. doi:10.1080/00103628909368129

    Article  CAS  Google Scholar 

  • Ben Miled DD, Zarrouk M, Chérif A (2000) Sodium chloride effects on lipase activity in germinating rape seeds. Biochem Soc T 28:899–902. doi:10.1042/bst0280899

    Article  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Bewley JD, Leung DWM, MacIsaac S, Reid JSG, Xu N (1993) Transient starch accumulation in the cotyledons of fenugreek seeds during galactomannan mobilization from the endosperm. Plant Physiol Biochem 31:483–490

    CAS  Google Scholar 

  • Bezerra MA, Lacerda CF, Gomes-Filho E, Abreu CEB, Prisco JT (2007) Physiology of cashew plants grown under adverse conditions. Braz J Plant Physiol 19:449–461. doi:10.1590/S1677-04202007000400012

    Article  CAS  Google Scholar 

  • Brown CS, Huber SC (1988) Reserve mobilization and starch formation in soybean (Glycine max) cotyledons in relation to seedling growth. Physiol Plantarum 72:518–524. doi:10.1111/j.1399-3054.1988.tb09159.x

    Article  CAS  Google Scholar 

  • Chapman JM, Galleschi L (1985) The control of food mobilization in seeds of Cucumis sativus L. VI. The production of starch. Ann Bot 55:29–34

    CAS  Google Scholar 

  • Chen HJ, Chen JY, Wang SJ (2008) Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta Physiol Plant 30:135–142. doi:10.1007/s11738-007-0101-y

    Article  CAS  Google Scholar 

  • Chenevard D, Frossard JS, Lacointe A (1994) Lipid utilization and carbohydrate partitioning during germination of English walnut (Juglans regia). Ann For Sci 51:373–379. doi:10.1051/forest:19940403

    Article  Google Scholar 

  • Darbelley N, Razafindramboa N, Chambost JP, Pavia A (1997) Light effects on α-amylase activity and carbohydrate content in relation to lipid mobilization during the seedling growth of sunflower. J Plant Res 110:347–356. doi:10.1007/BF02524933

    Article  CAS  Google Scholar 

  • Davies HV, Slack PT (1981) The control of food mobilization in seeds of dicotyledonous plants. New Phytol 88:41–51. doi:10.1111/j.1469-8137.1981.tb04566.x

    Article  CAS  Google Scholar 

  • de los Reyes BG, Myers SJ, McGrath JM (2003) Differential induction of glyoxylate cycle enzymes by stress as a marker for seedling vigor in sugar beet (Beta vulgaris). Mol Genet Genomics 269:692–698. doi:10.1007/s00438-003-0875-6

  • Dixon GH, Kornberg HL (1959) Assay methods for key enzymes of the glyoxylate cycle. Biochem J 72:3P

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Esechie HA, Al-Saidi A, Al-Khanjari S (2002) Effect of sodium chloride salinity on seedling emergence in chickpea. J Agron Crop Sci 188:155–160. doi:10.1046/j.1439-037X.2002.00554.x

    Article  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, New York

    Book  Google Scholar 

  • Ferreira-Silva SL, Voigt EL, Silva EN, Maia JM, Aragão TCR, Silveira JAG (2012) Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. Biol Plantarum 56:172–176. doi:10.1007/s10535-012-0037-y

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow H (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Gaines TP, Parker MB, Gascho GJ (1984) Automated determination of chlorides in soil and plant tissue by sodium nitrate extraction. Agron J 76:371–374. doi:10.2134/agronj1984.00021962007600030005x

    Article  CAS  Google Scholar 

  • Gallão MI, Vieira IGP, Mendes FNP, Souza ASN, Brito ES (2007) Reserve mobilisation in mesquite (Prosopis juliflora) seed (Leguminosae). J Sci Food Agr 87:2012–2018. doi:10.1002/jsfa.2936

    Article  Google Scholar 

  • Gomes-Filho E, Prisco JT, Campos FAP, Enéas-Filho J (1983) Effects of salinity in vivo and in vitro on ribonuclease activity of Vigna unguiculata cotyledons during germination. Physiol Plantarum 59:183–188. doi:10.1111/j.1399-3054.1983.tb00755.x

    Article  CAS  Google Scholar 

  • Gomes-Filho E, Lima CRFM, Costa JH, Silva ACM, Lima MGS, Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27:147–157. doi:10.1007/s00299-007-0433-5

    Article  PubMed  CAS  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142. doi:10.1146/annurev.arplant.59.032607.092938

    Article  PubMed  CAS  Google Scholar 

  • Guglielminetti L, Yamaguchi J, Perata P, Alpi A (1995) Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol 109:1069–1076. doi:10.1104/pp.109.3.1069

    PubMed  CAS  Google Scholar 

  • Gupta N, Rathi P, Gupta R (2002) Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal Biochem 311:98–99. doi:10.1016/S0003-2697(02)00379-2

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463

    Article  CAS  Google Scholar 

  • Herrera-Rodriguez MB, Maldonado JM, Pérez-Vicente R (2006) Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. J Plant Physiol 163:1061–1070. doi:10.1016/j.jplph.2005.10.012

    Article  PubMed  CAS  Google Scholar 

  • Hock B, Beevers H (1966) Development and decline of the glyoxylate-cycle enzymes in watermelon seedlings (Citrullus vulgaris Schrad.). Effects of dactinomycin and cycloheximide. Z Pflanzenphysiol 55:405–414

    CAS  Google Scholar 

  • Hodge JE, Hofreiter BR (1962) Determination of reducing sugars and carbohydrates. In: Wilster RL, Wolfrom ML (eds) Methods in carbohydrates chemistry, vol 1. Academic Press, New York, pp 380–394

    Google Scholar 

  • Hosseini MK, Powell AA, Bingham IJ (2002) Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res 12:165–172. doi:10.1079/SSR2002108

    Article  CAS  Google Scholar 

  • Karunagaran D, Rao R (1991) Mode and control of starch mobilization during germination of seeds of horse gram. Plant Sci 73:155–159. doi:10.1016/0168-9452(91)90023-2

    Article  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (1998) Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regul 26:85–90. doi:10.1023/A:1006008711079

    Article  CAS  Google Scholar 

  • Kitajima K (1996) Cotyledon functional morphology, patterns of seed reserve utilization and regeneration niches of tropical tree seedlings. In: Swaine MD (ed) The ecology of tropical forest tree seedlings. Parthenon Publishing Group, Carnforth, pp 193–210

    Google Scholar 

  • Lee YP (1966) Potato phosphorylase. Method Enzymol 8:550–554. doi:10.1016/0076-6879(66)08099-6

    Article  CAS  Google Scholar 

  • Liu SL, Siao W, Wang SJ (2010) Changing sink demand of developing shoot affects transitory starch biosynthesis in embryonic tissues of germinating rice seeds. Seed Sci Res 20:137–144. doi:10.1017/S0960258510000115

    Article  CAS  Google Scholar 

  • Marques EC, Freitas VS, Bezerra MA, Prisco JT, Gomes-Filho E (2011) Efeitos do estresse salino na germinação, emergência e estabelecimento da plântula de cajueiro anão precoce. Rev Ciênc Agron 42:993–999. doi:10.1590/S1806-66902011000400023

    Article  Google Scholar 

  • Miled-Daoud DB, Chérif A (1991) Effet du NaCl sur l’utilisation des lipids et les activités enzymatiques glyoxysomales au cours de la germination de deux espècies de Medicago. Can J Bot 70:876–883

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–581. doi:10.1016/j.plantsci.2010.02.010

    Article  CAS  Google Scholar 

  • Ohdan T, Francisco Junior PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244. doi:10.1093/jxb/eri292

    Article  PubMed  CAS  Google Scholar 

  • Oliveira VH, Miranda FR, Lima RN, Cavalcante RRR (2006) Effect of irrigation frequency on cashew nut yield in Northeast Brazil. Sci Hortic 108:403–407. doi:10.1016/j.scienta.2006.02.003

    Article  Google Scholar 

  • Oliveira-Neto OB, Damasceno AT, Campos FAP, Gomes-Filho E, Enéas-Filho J, Prisco JT (1998) Effect of NaCl-salinity on the expression of a cotyledonary β-amylase from Vigna unguiculata. Rev Bras Fisiol Veg 10:97–100

    Google Scholar 

  • Prisco JT, Vieira GHF (1976) Effects of NaCl salinity on nitrogenous compounds and proteases during germination of Vigna sinensis seeds. Physiol Plantarum 36:317–320. doi:10.1111/j.1399-3054.1976.tb02249.x

    Article  CAS  Google Scholar 

  • Prisco JT, Enéas-Filho J, Gomes-Filho E (1981) Effect of NaCl salinity on cotyledon starch mobilization during germination of Vigna unguiculata (L.) Walp seeds. Rev Bras Bot 4:63–71

    CAS  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533. doi:10.1146/annurev-arplant-042811-105550

    Article  PubMed  CAS  Google Scholar 

  • Ritchie S, Swanson SJ, Gilroy S (2000) Physiology of the aleurone layer and starchy endosperm during grain development and early seedling growth: new insights from cell and molecular biology. Seed Sci Res 10:193–212. doi:10.1017/S0960258500000234

    CAS  Google Scholar 

  • Rylott EL, Hooks MA, Graham IA (2001) Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem Soc T 29:283–287. doi:10.1042/bst0290283

    Article  CAS  Google Scholar 

  • Sánchez-Linares L, Gavilanes-Ruíz M, Díaz-Pontones D, Guzmán-Chavéz F, Calzada-Alejo V, Zurita-Villegas V, Luna-Loaiza V, Moreno-Sánchez R, Bernal-Lugo I, Sánchez-Nieto S (2012) Early carbon mobilization and radicle protrusion in maize germination. J Exp Bot 63:4513–4526. doi:10.1093/jxb/ers130

    Article  PubMed  Google Scholar 

  • Schupp N, Ziegler P (2004) The relation of starch phosphorylases to starch metabolism in wheat. Plant Cell Physiol 45:1471–1484. doi:10.1093/pcp/pch170

    Article  PubMed  CAS  Google Scholar 

  • Soltani A, Gholipoor M, Zeinali E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot 55:195–200. doi:10.1016/j.envexpbot.2004.10.012

    Article  Google Scholar 

  • Sousa MF, Campos FAP, Prisco JT, Enéas-Filho J, Gomes-Filho E (1999) Growth and protein pattern in cowpea seedlings subjected to salinity. Biol Plantarum 47:341–346. doi:10.1023/B:BIOP.0000023875.63226.67

    Article  Google Scholar 

  • Tan-Wilson AL, Wilson KA (2012) Mobilization of seed protein reserves. Physiol Plantarum 145:140–153. doi:10.1111/j.1399-3054.2011.01535.x

    Article  CAS  Google Scholar 

  • Tetlow IA, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145. doi:10.1093/jxb/erh248

    Article  PubMed  CAS  Google Scholar 

  • Tomarelli R, Charney J, Harding ML (1949) The use of azoalbumin as a substrate in the colorimetric determination of peptic and tryptic activity. J Lab Clin Med 34:428–433

    PubMed  CAS  Google Scholar 

  • Voigt EL, Almeida TA, Chagas RM, Ponte LFA, Viégas RA, Silveira JAG (2009) Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. J Plant Physiol 166:80–89. doi:10.1016/j.jplph.2008.02.008

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Rasul E, Rao AR (1999) Germination of seeds and propagules under salt stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Dekker, Inc., New York, pp 153–167

    Google Scholar 

  • Winkler UR, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    PubMed  CAS  Google Scholar 

  • Yemm EW, Cocking EC, Ricketts RE (1955) The determination of amino-acids with ninhydrin. Analyst 80:209–213. doi:10.1039/AN9558000209

    Article  CAS  Google Scholar 

  • Younis ME, Hasaneen MNA, Nemet-Alla MM (1987) Plant growth, metabolism and adaptation in relation to stress conditions. IV. Effects of salinity on certain factors associated with the germination of three different seeds high in fats. Ann Bot 60:337–344

    Google Scholar 

Download references

Acknowledgments

We are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for financial support and scholarships and to Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA-CNPAT) for supplying the dwarf cashew nuts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enéas Gomes-Filho.

Additional information

Communicated by S. Weidner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, E.C., de Freitas, P.A.F., Alencar, N.L.M. et al. Increased Na+ and Cl accumulation induced by NaCl salinity inhibits cotyledonary reserve mobilization and alters the source-sink relationship in establishing dwarf cashew seedlings. Acta Physiol Plant 35, 2171–2182 (2013). https://doi.org/10.1007/s11738-013-1254-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1254-5

Keywords

Navigation