Skip to main content
Log in

Kinetics of mercury uptake by oilseed rape and white lupin: influence of Mn and Cu

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Mercury influx in oilseed rape and white lupin was studied using short time influx experiments. The effect of Cu and Mn in Hg influx was also tested. Plants were grown for 2 weeks and then roots were incubated with increasing Hg concentrations (0–50 μM HgCl2), both at 20 °C and ice-cold temperature. An active, saturable component in Hg uptake was found in oilseed rape and white lupin, with K m and V max values in the range of low affinity transporters for essential micronutrients. A reduction in Hg uptake was observed in the presence of Mn for oilseed rape, suggesting that Hg influx is mediated by a Mn transporter. No effects of Cu on Hg influx were observed for any of the two plant species, suggesting a different transport system for Hg and Cu in roots of oilseed rape and white lupin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Allnutt F, Bonner W (1987) Evolution of reductive release as mechanism for iron uptake from ferrioxamine B by Chlorella vulgaris. Plant Physiol 85:751–756

    Article  PubMed  CAS  Google Scholar 

  • Beauford W, Barber J, Barringer AJ (1977) Uptake and distribution of mercury within higher plants. Plant Physiol 39:261–265

    Article  CAS  Google Scholar 

  • Bowen JE (1987) Physiology of genotypic differences in zinc and copper uptake in rice and tomato. Plant Soil 99:115–125

    Article  CAS  Google Scholar 

  • Bravin MN, Merrer BL, Denaix L, Schneider A, Hinsinger P (2010) Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant Soil 331:91–104

    Article  CAS  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  PubMed  CAS  Google Scholar 

  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  PubMed  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    Article  PubMed  CAS  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Costa C, Morel JL (1993) Cadmium uptake by Lupinus albus L.: cadmium excretion, a possible mechanism of cadmium tolerance. J Plant Nutr 16:1921–1929

    Article  CAS  Google Scholar 

  • Du X, Zhu YG, Liu WJ, Zhao XS (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54:1–7

    Article  CAS  Google Scholar 

  • Esteban E, Carpena RO, Meharg AA (2003) High-affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate status. New Phytol 158:165–173

    Article  CAS  Google Scholar 

  • Esteban E, Moreno E, Peñalosa J, Cabrero J, Millan R, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322

    Article  CAS  Google Scholar 

  • Greger M, Wang Y, Neuschütz C (2005) Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environ Pollut 134:201–208

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson JP (2012) Visual MINTEQ Version 3.0 Kungl Tekniska Hogskolan (KTH), Division of Land Water Resources, 2012; updated June 13, 2012 (http://www2.lwr.kth.se/English/OurSoftware/Vminteq/index.html)

  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463

    Article  PubMed  CAS  Google Scholar 

  • Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in the Almadén mining district, Spain. J Geochem Explor 80:95–104

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2000) Trace elements in soils and plants. CRC Press, Florida

    Book  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol 112:1715–1722

    PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  • Maas E, Moore D, Mason B (1967) Manganese absorption by excised barley roots. Plant Physiol 43:527–530

    Article  Google Scholar 

  • Meharg AA, Macnair MR (1994) Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvetgrass. J Environ Qual 23:234–238

    Article  CAS  Google Scholar 

  • Nowack B, Mayer KU, Oswald SE, van Beinum W, Appelo CAJ, Jacques D, Seuntjens P, Gerard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Pandey PK, Singh SP (1993) Hg2+ uptake in a Cyanobacterium. Curr Microbiol 26:155–159

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Pedas P, Hebbern CA, Schjoerring JK, Holm PE, Husted S (2005) Differential capacity for high-affinity manganese uptake contributes to differences between barley genotypes in tolerance to low manganese availability. Plant Physiol 139:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT11[OA]. Plant Physiol 148:455–466

    Article  PubMed  CAS  Google Scholar 

  • Reid RJ, Brookes JD, Tester MA, Smith FA (1996) The mechanism of zinc uptake in plants. Planta 198:39–45

    Article  CAS  Google Scholar 

  • Rodriguez L, Rincón J, Asencio I, Rodríguez-Castellanos L (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytorremediation perspectives. Int J Phytorem 9:1–13

    Article  CAS  Google Scholar 

  • Sierra MJ, Millán R, Esteban E, Cardona AI, Schmid T (2008) Evaluation of mercury uptake and distribution in Vicia sativa L. applying two different study scales: greenhouse conditions and lysimeter experiments. J Geochem Exp 96:203–209

    Article  CAS  Google Scholar 

  • Suszcynsky EM, Shann JR (1995) Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ Toxicol Chem 14:61–67

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161

    Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, MaLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  PubMed  CAS  Google Scholar 

  • Zornoza P, Sánchez Pardo B, Carpena RO (2010) Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus. J Plant Physiol 167:1027–1032

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Science and Innovation financially supported this research (CGL2009-13171-C03-02), together with Autonomous Community of Madrid (EIADES S2009/AMB-1478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Esteban.

Additional information

Communicated by G. Klobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban, E., Deza, M.J. & Zornoza, P. Kinetics of mercury uptake by oilseed rape and white lupin: influence of Mn and Cu. Acta Physiol Plant 35, 2339–2344 (2013). https://doi.org/10.1007/s11738-013-1253-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1253-6

Keywords

Navigation