Skip to main content

Advertisement

Log in

Water stress impact on young seedling growth of Acacia arabica

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought is the major constraint in arid regions throughout the world and identification of drought-resistant plants is therefore of crucial importance. Since young seedling stage is especially sensitive to water stress, the present work analyzed the physiological behavior of seedling from Acacia arabica issued from a dry area, grown under controlled environmental conditions and subjected to progressive soil drying. Although soil gravimetric water content (g H2O g−1 soil dry weight) dropped from 80 % to less than 35 %, most plants remained alive until the end of the water stress. Seedlings were able to efficiently close their stomata to reduce water losses and accumulated high amounts of proline. Despite osmotic adjustment, turgor pressure decreased in stressed plants and could explain the stress-induced inhibition of plant growth. Decrease in net photosynthesis was related to stress-induced decrease in stomatal conductance and not to any impact on chlorophyll concentration or fluorescence-related parameter: both PSII efficiency and photochemical quenching remained unaffected by water stress while drought-induced increase in non-photochemical quenching should be regarded as a strategy to avoid over-energisation of the photosynthetic apparatus. Instantaneous water use efficiency increased in stressed plants comparative to controls. Oxidative stress estimated by malondialdehyde concentration was recorded only at the end of the treatment, suggesting that stressed plants remained able to cope with reactive oxygen species. Water stress induced an increase in anthocyanins, while aglycone flavonols decreased. Those compounds were not involved in the management of oxidative stress. It is concluded that A. arabica is a promising drought-resistant plant species for rehabilitation of dry areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Net CO2 assimilation rate

Θ:

Soil water content

E :

Instantaneous transpiration rate

ETR:

Electron transport rate

F v /F m :

Maximal efficiency of PSII

g s :

Stomatal conductance

NPQ:

Non-photochemical quenching

ΦPSII:

Photosystem II efficiency

Ψs :

Osmotic potential

Ψw :

Water potential

qP:

Photochemical quenching

RWC:

Relative water content

WC:

Water content

References

  • Almansouri M, Kinet JM, Lutts S (1999) Effect of sudden and progressive exposure of various durum wheat (Triticum durum Desf.) cultivars to salt stress. J Plant Physiol 154:743–752

    Article  CAS  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and shoots of the halophyte Atriplex halimus and their corresponding callus cultures. Plant Sci 137:131–142

    Article  CAS  Google Scholar 

  • Bajji M, Lutts S, Kinet JM (2000) Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in callus cultures issued from durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. J Plant Physiol 156:75–83

    Article  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of the free proline in water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Ben Hassine A, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycine betaine in response to salinity and water stress. J Exp Bot 59:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotech 14:89–97

    Article  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Chaieb N, González JL, López-Mesas M, Bouslama M, Valiente M (2011) Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.). Food Res Intern 44:970–977

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chaves MM, Zarrouk O, Fransisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676

    Article  PubMed  CAS  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot 89:887–894

    Article  PubMed  CAS  Google Scholar 

  • Djellouli Y (1990) Flore et Végétation de l’Algérie septentrional. Thèse de doctorat d’Etat. Université des Sciences et Techniques Houari Boumediene (USTHB), Alger, p 239

  • Faria T, García-Plazaola JI, Abadía A, Cerasoli S, Pereira JS, Chaves MM (1996) Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercussuber L.) during summer. Tree Physiol 16:115–123

    Article  PubMed  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkley TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  PubMed  CAS  Google Scholar 

  • Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoeichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:185–188

    Google Scholar 

  • Jury WA, Vaux H (2005) The role of science in solving the world’s emerging water problems. Proc Natl Acad Sci USA 102:15715–15720

    Article  PubMed  CAS  Google Scholar 

  • Kim J, van Iersel MW (2011) Slowly developing drought stress increases photosynthetic acclimation of Catharanthus roseus. Physiol Plant 143:166–177

    Article  PubMed  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885

    Article  PubMed  CAS  Google Scholar 

  • Lebreton PH, Jay M, Voirin B, Bouchez MP (1967) Sur l’analyse qualitative et quantitative des flavonoides. Chim Anal (Paris) 49:375–383

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lutts S, Almansouri M, Kinet JM (2004) Comparative effects of salt and water stresses on the relationship between callus growth and cell viability in durum wheat (Triticum durum Desf.). Plant Sci 167:9–18

    Article  CAS  Google Scholar 

  • Maatallah S, Ghanem ME, Albouchi A, Bizid E, Lutts S (2010) A greenhouse investigation of responses to different water stress regimes of Laurus nobilis trees from two climatic regions. J Arid Environ 74:327–337

    Article  Google Scholar 

  • Martínez JP, Ledent JF, Bajji M, Kinet JM, Lutts S (2003) Effect of water stress on growth, Na+ and K+ accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus. Plant Growth Regul 41:63–73

    Article  Google Scholar 

  • Martínez JP, Lutts S, Schanck A, Bajji M, Kinet JM (2004) Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L? J Plant Physiol 161:1041–1051

    Article  PubMed  Google Scholar 

  • Moore JP, Westall KL, Ravenscroft N, Farrant JM, Lindsey GG, Brandt WF (2005) The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical induced oxidation. Biochem J 385:301–308

    Article  PubMed  CAS  Google Scholar 

  • Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  PubMed  CAS  Google Scholar 

  • Osório ML, Breia E, Rodrigues A, Osório J, Le Roux X, Daudet FA, Ferreira I, Chaves MM (2006) Limitations to carbon assimilation by mild drought in nectarine trees growing under field conditions. Env Exp Bot 55:235–247

    Article  Google Scholar 

  • Owens MK, Wallace RB, Archer R (1995) Seed dormancy and persistence of Acacia berlandieri and Leucanea pulverulenta in a semi-arid environment. J Arid Environ 29:15–23

    Article  Google Scholar 

  • Parida A, Das AB, Sanada Y, Mohanty P (2004) Effects of salinity on biochemical components of the mangrove Aegiceras corniculatum. Aquat Bot 80:77–87

    Article  CAS  Google Scholar 

  • Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  PubMed  CAS  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Env Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Pradhan SS, Sarkar A (2009) Enhancement of electrical conductivity in the Gum Arabica complex. Mat Sci Eng C29:1790–1793

    Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Op Biotechnol 21:197–203

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radicals cavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimatation of Arabidopsis thaliana to drought stress. J Plant Physiol 169:577–585

    Article  PubMed  CAS  Google Scholar 

  • Sudisha J, Niranjan-Raj S, Shetty HS (2009) Seed priming with plant gum biopolymers enhances efficacy of metalaxyl 35 SD against pearl millet downy mildew. Phytoparasitica 37:161–169

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Périlleux C, Javaux M, Lutts S (2012) Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J Exp Bot 63:4359–4373

    Article  PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Kukavica B, Navari-Izzo F (2008) Characterization of polyphenol oxidase changes induced by desiccation of Ramonda serbica leaves. Physiol Plant 132:407–416

    Article  PubMed  CAS  Google Scholar 

  • Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    Article  PubMed  CAS  Google Scholar 

  • Warren CR, Aranda I, Cano FJ (2011) Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. Plant Cell Environ 34:1609–1629

    Article  PubMed  CAS  Google Scholar 

  • Yemm EW, Willis J (1954) The estimation of carbohydrates in plant extracts by anthrone. J Biochem 57:508–514

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Wallonie-Bruxelles International (WBI; project de coopération 2—axe 4) and by the Fonds National de la Recherche Scientifique (Conventions N° 1.5117.11 and 1.5114.11). The authors are very grateful to Brigitte Van Pee for technical assistance and to Université catholique de Louvain (Secrétariat à la cooperation) for the PhD grant of Nassima Lasoussane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Lutts.

Additional information

Communicated by R. Aroca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassouane, N., Aïd, F. & Lutts, S. Water stress impact on young seedling growth of Acacia arabica . Acta Physiol Plant 35, 2157–2169 (2013). https://doi.org/10.1007/s11738-013-1252-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1252-7

Keywords

Navigation