Skip to main content
Log in

Regulatory effects of atrazine differentially override sucrose repression of amino acid catabolism

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Catabolic processes providing alternative sources of electron for the mitochondrial electron transport chain are progressively emerging as important players in plants for stress responses, nutritional switch responses and growth and development. In this context, xenobiotics, such as the herbicide atrazine, which are at the crossroads of xenobiotic action, photosystem homeostasis and ROS dynamics, are likely to be useful for understanding the regulation of these catabolic processes. Transcriptomic analysis of atrazine effects on Arabidopsis under different conditions of carbon status reveals that atrazine significantly upregulates the genes involved in leucine catabolism, in contrast to partial regulatory effects on the genes involved in valine, isoleucine and lysine catabolic pathways. These effects on amino acid catabolism gene expression are associated with regulatory effects on genes involved in proteolytic processes and in alternative carbon mitochondrial respiration. Genes involved in leucine catabolism are activated by atrazine in the presence of exogenous sucrose, thus indicating that atrazine-associated signals can override sucrose repression. There may be a link between these effects and atrazine-related increase in hydrogen peroxide, which is involved in retrograde signalling. However, comparison with studies of reactive oxygen species modifications indicate that atrazine regulation of branched chain amino acid catabolism differs from reactive oxygen species signalling, including hydrogen peroxide, thus suggesting complex signalling pathways between photosystem functioning and leucine catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

A:

Atrazine

BBH:

Best blast hit

BCAT:

Branched chain amino acid transaminase

BCKDH:

Branched chain keto-acid dehydrogenase

DH:

Dehydrogenase

ETF:

Electron-transfer flavoprotein

ETFQO:

Electron-transfer flavoprotein:ubiquinone oxidoreductase

HMG-CoA:

Hydroxymethylglutaryl-CoA

IVDH:

Isovaleryl-CoA dehydrogenase

M:

Mannitol

MA:

Mannitol–atrazine

MCCase:

3-Methylcrotonyl-CoA carboxylase

PSII:

Photosystem II

qRT-PCR:

Quantitative real-time reverse transcription-polymerase chain reaction

S:

Sucrose

SA:

Sucrose–atrazine

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR (2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22:1549–1563

    Article  PubMed  Google Scholar 

  • Araújo WL, Ishizaki K, Nunes-Nesi A, Tohge T, Larson TR, Krahnert I, Balbo I, Witt S, Dörmann P, Graham IA, Leaver CJ, Fernie AR (2011) Analysis of a range of catabolic mutants provides evidence that phytanoyl-Coenzyme A does not act as a substrate of the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex in Arabidopsis during dark-induced senescence. Plant Physiol 157:55–69

    Article  PubMed  Google Scholar 

  • Baena-González E, Sheen J (2008) Convergent energy and stress signalling. Trends Plant Sci 13:474–482

    Article  PubMed  Google Scholar 

  • Bode K, Hooks MA, Couée I (1999) Identification, separation, and characterization of acyl-CoA dehydrogenases involved in mitochondrial ß-oxidation in higher plants. Plant Physiol 119:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Ok Lim P, Gil Nam H, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    Article  PubMed  CAS  Google Scholar 

  • Däschner K, Couée I, Binder S (2001) The mitochondrial isovaleryl-Coenzyme A dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol 126:601–612

    Article  PubMed  Google Scholar 

  • Diebold R, Schuster J, Däschner K, Binder S (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550

    Article  PubMed  CAS  Google Scholar 

  • Dieuaide M, Couée I, Raymond P, Pradet A (1993) Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid ß-oxidation and acyl-CoA dehydrogenase activity in a higher plant. Biochem J 296:199–207

    PubMed  CAS  Google Scholar 

  • Ding G, Che P, Ilarslan H, Wurtele ES, Nikolau BJ (2012) Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination. Plant J 70:562–577

    Article  PubMed  CAS  Google Scholar 

  • Dobrenel T, Marchive C, Somani R, Moreau M, Mozzo M, Montané MH, Menand B, Robaglia C, Meyer C (2011) Regulation of plant growth and metabolism by the TOR kinase. Biochem Soc Trans 39:477–481

    Article  PubMed  CAS  Google Scholar 

  • Engqvist MKM, Drincovich MF, Flügge UI, Maurino VG (2009) Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways. J Biol Chem 284:25026–25036

    Article  PubMed  CAS  Google Scholar 

  • Engqvist MKM, Kuhn A, Wienstroer J, Weber K, Jansen EEW, Jakobs C, Weber APM, Maurino VG (2011) Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J Biol Chem 286:11382–11390

    Article  PubMed  CAS  Google Scholar 

  • Faivre-Nitschke SE, Couée I, Vermel M, Grienenberger JM, Gualberto JM (2001) Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. Eur J Biochem 268:1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Ito M, Nishida I, Watanabe A (2000) Multiple signalling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis. Plant Physiol 124:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Goetzman ES, Mohsen AWA, Prasad K, Vockley J (2005) Convergent evolution of a 2-Methylbutyryl-CoA dehydrogenase from Isovaleryl-CoA dehydrogenase in Solanum tuberosum. J Biol Chem 280:4873–4879

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene-expression in cucumber. Plant Cell 6:761–772

    PubMed  CAS  Google Scholar 

  • Gu L, Jones AD, Last RL (2010) Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant. Plant J 61:579–590

    Article  PubMed  CAS  Google Scholar 

  • Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336:918–922

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ (2005) The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17:2587–2600

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J 47:751–760

    Article  PubMed  CAS  Google Scholar 

  • Lamesch P, Berardini PZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210

    Article  PubMed  CAS  Google Scholar 

  • Lucas KA, Filley JR, Erb JM, Graybill ER, Hawes JW (2007) Peroxisomal metabolism of propionic acid and isobutyric acid in plants. J Biol Chem 282:24980–24989

    Article  PubMed  CAS  Google Scholar 

  • Mack M, Schniegler-Mattox U, Peters V, Hoffmann GF, Liesert M, Buckel W, Zschocke J (2006) Biochemical characterization of human 3-methylglutaconyl-CoA hydratase and its role in leucine metabolism. FEBS J 273:2012–2022

    Article  PubMed  CAS  Google Scholar 

  • Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) H2O2-triggered retrograde signalling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729

    Article  PubMed  CAS  Google Scholar 

  • Mentzen WI, Peng J, Ransom N, Nikolau BJ, Wurtele ES (2008) Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism. BMC Plant Biol 8:76

    Article  PubMed  Google Scholar 

  • Ramel F, Sulmon C, Cabello-Hurtado F, Taconnat L, Martin-Magniette ML, Renou JP, El Amrani A, Couée I, Gouesbet G (2007) Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 8:450

    Article  PubMed  Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G (2009) Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28

    Article  PubMed  Google Scholar 

  • Ramel F, Sulmon C, Serra AA, Gouesbet G, Couée I (2012) Xenobiotic sensing and signalling in higher plants. J Exp Bot 63:3999–4014

    Article  PubMed  CAS  Google Scholar 

  • Riewe D, Koohi M, Lisec J, Pfeiffer M, Lippmann R, Schmeichel J, Willmitzer L, Altmann T (2012) A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J 71:850–859

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–653

    Article  PubMed  CAS  Google Scholar 

  • Sass JO, Forstner R, Sperl W (2004) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: impaired catabolism of isoleucine presented as neurodegenerative disease. Brain Dev 26:12–14

    Article  PubMed  Google Scholar 

  • Schuster J, Binder S (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol 57:241–254

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (2007) Leucine and protein synthesis: mTOR and beyond. Nutr Rev 65:122–129

    Article  PubMed  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2004) Lipoic acid-dependent oxidative catabolism of α-ketoacids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol 134:838–848

    Article  PubMed  CAS  Google Scholar 

  • Weisman D, Alkio M, Colón-Carmona A (2010) Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signalling pathways. BMC Plant Biol 10:59

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the interdisciplinary program “Ingénierie écologique” (Centre National de la Recherche Scientifique, France) and by a fellowship (to F. Ramel) from the Ministère de l’Enseignement Supérieur et de la Recherche (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Couée.

Additional information

Communicated by G. Klobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramel, F., Sulmon, C., Gouesbet, G. et al. Regulatory effects of atrazine differentially override sucrose repression of amino acid catabolism. Acta Physiol Plant 35, 2329–2337 (2013). https://doi.org/10.1007/s11738-013-1246-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1246-5

Keywords

Navigation