Skip to main content
Log in

Vacuolar invertases in potato (Solanum tuberosum L.): molecular cloning, characterization, sequence comparison, and analysis of gene expression in the cultivars

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In plants, vacuolar invertase (β-fructofuranosidase, EC 3.2.1.26) is known to play as a key modulator for hexose accumulation and cell expansion. In this study, two cDNA clones (2,013 and 1,945 bp, with 99 % sequence identity) encoding vacuolar invertase isoforms were isolated from a commercially important Indian potato cultivar, Kufri Chipsona-1 by RT-PCR. The corresponding predicted proteins consisted of 635 amino acids (designated as KC-VIN1, lacking a few amino acids at N-terminus) and 639 amino acids (designated as KC-VIN2), respectively. They showed 99 % identity, and found to vary at several locations with mostly non-conservative substitutions. Multiple sequence alignment of vacuolar invertase homologs covering four Solanaceae family members revealed some notable distinguishing sequence features (signature-type sequences). A consensus sequence was predicted using 45 vacuolar invertase sequences from 27 taxonomically different plant species, and a phylogenetic tree was generated to know the evolutionary relation between them. Hydrophobic characters were predicted, and compared in different plant species. All these data are presented in a comprehensive manner which were not documented in the earlier reports. As a preliminary study, vacuolar invertase expression patterns in the tubers of some Indian potato cultivars were analyzed by semi-quantitative RT-PCR and extractable enzyme assay. In all the potato cultivars, the overall expression level of invertase was found to be considerably higher after storage at low temperature as compared to the freshly harvested tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arai M, Mori H, Imaseki H (1992) Cloning and sequence of cDNAs for an intracellular acid invertase from etiolated hypocotyls of mung bean and expression of the gene during growth of seedlings. Plant Cell Physiol 33:245–252

    CAS  Google Scholar 

  • Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci 106:13124–13129

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang J (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154:939–948

    Article  PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Robinson SP (1996) Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol 111:275–283

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF (1989) Redundancies in protein sequences. In: Fasman GD (ed) Prediction of protein structure and the principles of protein conformation. Plenum Press, New York, pp 599–623

    Chapter  Google Scholar 

  • Draffehn AM, Meller S, Li L, Gebhardt C (2010) Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol 10:271

    Article  PubMed  CAS  Google Scholar 

  • Elliott KJ, Buttler WO, Dickinson CD, Konno Y, Vedvick TS, Fitzmaurice L, Mirkov TE (1993) Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol 21:515–524

    Article  PubMed  CAS  Google Scholar 

  • Fotopoulos V (2005) Plant invertases: structure, function and regulation of a diverse enzyme family. J Biol Res 4:127–137

    CAS  Google Scholar 

  • Genova AD, Goverse A, Massa AN et al., The Potato Genome Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189-195

    Google Scholar 

  • Gilman M (1987) Phenol/SDS method for plant RNA preparation. In: Ausubel FM et al (eds) Current protocols in molecular biology. John Wiley and Sons, New York, pp 431–434

    Google Scholar 

  • Greiner S, Rausch T, Sonnewald U, Herbers K (1999) Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotech 17:708–711

    Article  CAS  Google Scholar 

  • Haouazine-Takvorian N, Tymowska-Lalanne Z, Takvorian A, Tregear J, Lejeune B, Lecharny A, Kreis M (1997) Characterisation of two members of the Arabidopsis thaliana gene family, Atbfruct3 and Atbfruct4, coding for vacuolar invertases. Gene 197:239–251

    Article  PubMed  CAS  Google Scholar 

  • Hedley PE, Machray GC, Davies HV, Burch L, Waugh R (1993) cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Biol 22:917–922

    Article  PubMed  CAS  Google Scholar 

  • Huang WC, Wang AY, Wang LT, Sung HY (2003) Expression and characterization of sweet potato invertase in Pichia pastoris. J Agric Food Chem 51:1494–1499

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Mahe A, Brangeon J, Prioul JL (2000) A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol 124:71–84

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle R (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W (2009) Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot 60:727–740

    Article  PubMed  CAS  Google Scholar 

  • Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M (2004) Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res 117:131–137

    Article  PubMed  CAS  Google Scholar 

  • Menendez CM, Ritter E, Schäfer-Pregl R, Walkemeier B, Kalde A, Salamini F, Gebhardt C (2002) Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 162:1423–1434

    PubMed  CAS  Google Scholar 

  • Ohyama A, Hirai M, Nishimura S (1992) A novel cDNA clone for acid invertase in tomato fruit. Jpn J Genet 67:491–492

    Article  PubMed  CAS  Google Scholar 

  • Ohyama A, Nishimura S, Hirai M (1998) Cloning of cDNA for a cell wall-bound acid invertase from tomato (Lycopersicon esculentum) and expression of soluble and cell wall-bound invertases in plants and wounded leaves of L. esculentum and L. peruvianum. Genes Genet Syst 73:149–157

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Greiner S (2004) Plant protein inhibitors of invertases. Biochim Biophys Acta 1696:253–261

    Article  PubMed  CAS  Google Scholar 

  • Richardson DL, Davies HV, Ross HA, Mackay GR (1990) Invertase activity and its relation to hexose accumulation in potato tubers. J Exp Bot 41:95–99

    Article  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Ruan Y-L, Jin Y, Yang Y-J, Li G-J, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  PubMed  CAS  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods. New Age International, New Delhi, India

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sato T, IwatsuboT Takahashi M, Nakagawa H, Ogura N, Mori H (1993) Intercellular localization of acid invertase in tomato fruit and molecular cloning of a cDNA for the enzyme. Plant Cell Physiol 34:263–269

    PubMed  CAS  Google Scholar 

  • Schäfer-Pregl R, Ritter E, Concilio L, Hesselbach J, Lovatti L, Walkemeier B, Thelen H, Salamini F, Gebhardt C (1998) Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theor Appl Genet 97:834–846

    Article  Google Scholar 

  • Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531

    Article  PubMed  CAS  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sturm A, Chrispeels MJ (1990) cDNA cloning of carrot extracellular [beta]-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2:1107–1119

    PubMed  CAS  Google Scholar 

  • Sturm A, Hess D, Lee H-S, Lienhard S (1999) Neutral invertase is a novel type of sucrose-cleaving enzyme. Physiol Plant 107:159–165

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tian H, Kong Q, Feng Y, Yu X (2009) Cloning and characterization of a soluble acid invertase-encoding gene from muskmelon. Mol Biol Rep 36:611–617

    Article  PubMed  CAS  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry and molecular biology. Adv Bot Res 28:71–117

    Article  CAS  Google Scholar 

  • Unger C, Hardegger M, Lienhard S, Sturm A (1994) cDNA cloning of carrot (Daucus carota) soluble acid β-fructofuranosidases and comparison with the cell wall isoenzyme. Plant Physiol 104:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • van de Wal MHBJ, Jacobsen E, Visser RGF (2001) Multiple allelism as a control mechanism in metabolic pathways: GBSSI allelic composition affects the activity of granule-bound starch synthase I and starch composition in potato. Mol Genet Genomics 265:1011–1021

    Article  PubMed  Google Scholar 

  • Van den Ende W, Coopman M, Clerens S, Vergauwen R, Le Roy K, Lammens W, Van Laere A (2011) Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme. Plant Physiol 155:603–614

    Article  PubMed  Google Scholar 

  • Verhaest M, Van den Ende W, Roy KL, De Ranter CJ, Laere AV, Rabijns A (2005) X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J 41:400–411

    Article  PubMed  CAS  Google Scholar 

  • Wang LT, Wang AY, Hsieh CW, Chen CY, Sung HY (2005) Vacuolar invertases in sweet potato: molecular cloning, characterization, and analysis of gene expression. J Agric Food Chem 53:3672–3678

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Mattoo A, Li N, Imaseki H, Solomos T (1994) Complete nucleotide sequence of potato tuber acid invertase cDNA. Plant Physiol 106:397–398

    Article  PubMed  CAS  Google Scholar 

  • Zrenner R, Schuler K, Sonnewald U (1996) Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198:246–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gracefully thank the Council of Scientific and Industrial Research (CSIR), Govt. of India for providing fellowship to V. Kumari; Department of Biotechnology (DBT), Govt. of India for providing research funding to N. Das.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Das.

Additional information

Communicated by S. Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, V., Das, N. Vacuolar invertases in potato (Solanum tuberosum L.): molecular cloning, characterization, sequence comparison, and analysis of gene expression in the cultivars. Acta Physiol Plant 35, 2055–2068 (2013). https://doi.org/10.1007/s11738-013-1240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1240-y

Keywords

Navigation