Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light

Abstract

The effects of 6-benzylaminopurine (6-BA) on plant growth, net photosynthetic rate, relative chlorophyll content, soluble protein, carbohydrates contents and antioxidant systems of cucumber (Cucumis sativus L.) under low-light environment were investigated using two different cucumber cultivars. The results showed that the weak light resulted in the remarkable decrease in plant net photosynthetic rate, relative chlorophyll content, soluble protein and carbohydrates contents, but promoted the superoxide dismutase and guaiacol peroxidase activities. However, application of 6-BA alleviated the reduction of the correlative parameters and mediated the changes of antioxidant systems. The potential mechanisms may involve the following aspects: 6-BA clearly enhanced the plants’ tolerance to low light by increasing chlorophyll content, reducing the production of superoxide radical (O ·−2 ), and enhancing the quenching of hydrogen peroxide (H2O2), consequently alleviating the injury of photosynthetic system, and further increasing the efficiency of CO2 assimilation, producing more carbohydrates which can meet the growth need of cucumber. Meanwhile, the present study indicated that cucumber of Europe mini type (Chunqiuwang) was more tolerant to low light than HuaNan type (Huza No.3).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

6-BA:

6-Benzylaminopurine

A sat :

CO2 assimilation at saturated PPFD

Ci:

Intercellular CO2 concentration

CTK:

Cytokinin

F v/F o :

Potential photochemical efficiency

F v/F m :

The maximal photochemical efficiency of photosystem II (PSII)

G-POD:

Guaiacol peroxidase

Gs:

Stomatal conductance

H2O2 :

Hydrogen peroxide

LSD:

Least significance difference

O ·−2 :

Superoxide radical

ROS:

Reactive oxygen species

SAS:

Statistical analysis system

SOD:

Superoxide dismutase

Tr:

Transpiration rate

References

  1. Adams WW III, Amiard VSE, Mueh KE, Turgeon R, Demmig AB (2005) Phloem loading type and photosynthetic acclimation to light. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Allen Press, Lawrence, pp 814–816

    Google Scholar 

  2. Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, III Adams WW (2005) Anatomical and photosynthetic acclimation to light environment in species with differing mechanisms of phloem loading. Proc Natl Acad Sci USA 102:12968–12973

    PubMed  Article  CAS  Google Scholar 

  3. An JS, Zhang M, Lu QR, Zhang ZG (2006) Effect of a prestorage treatment with 6-benzylaminopurine and modified atmosphere packaging storage on the respiration and quality of green asparagus spears. J Food Eng 77:951–957

    Article  CAS  Google Scholar 

  4. Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    PubMed  Article  CAS  Google Scholar 

  5. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    PubMed  Article  CAS  Google Scholar 

  6. Bassow SL, Bazzaz FA (1997) Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109:507–515

    Article  Google Scholar 

  7. Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol System 10:351–371

    Article  Google Scholar 

  8. Boonman A, Prinsen E, Gilmer F, Schurr U, Peeters AJM, Voesenek LAC, Pons TL (2007) Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol 143:1841–1852

    PubMed  Article  CAS  Google Scholar 

  9. Boucaud J, Ungar IA (1976) Hormonal control of germination under saline conditions of three halophyte taxa in genus Suaeda. Physiol Plant 36:197–200

    Article  Google Scholar 

  10. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    PubMed  Article  CAS  Google Scholar 

  12. Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44:1627–1629

    Article  CAS  Google Scholar 

  13. Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    PubMed  Article  CAS  Google Scholar 

  14. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed  Article  CAS  Google Scholar 

  15. Chernyad’ev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). App Biochem Microbiol 45:351–362

    Article  Google Scholar 

  16. Clarke SF, Jameson PE, Downs C (1994) The influence of 6-benzylaminopurine on post-harvest senescence of floral tissues of broccoli (Brassica oleraea var Italia). Plant Growth Regul 14:21–27

    Article  CAS  Google Scholar 

  17. Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    PubMed  Article  CAS  Google Scholar 

  18. Dong HZ, Niu YH, Kong XQ, Luo Z (2009) Effects of early-fruit removal on endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Plant Growth Regul 59:93–101

    Article  CAS  Google Scholar 

  19. Ellsworth DS, Reich PB (1992) Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments. Funct Ecol 6:423–435

    Article  Google Scholar 

  20. Else MA, Janowiak F, Atkinson CJ, Jackson MB (2009) Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann Bot 103:313–323

    PubMed  Article  CAS  Google Scholar 

  21. Elstner EF, Oswald W (eds) (1994) Mechanism of oxygen activation during plant stress. In: Oxygen and environmental stress in plants, vol 102B. Royal Society of Edinburgh, Edinburgh, pp 131–154

  22. Farquhar GD, Sharky TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  23. Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540

    CAS  Google Scholar 

  24. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    PubMed  Article  CAS  Google Scholar 

  25. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 900:87–92

    Article  Google Scholar 

  26. Giannopolitis CN, Ries SK (1977) Superoxide dismutase I. Occurrence in higher plants. Plant Physiol 59:309–314

    PubMed  Article  CAS  Google Scholar 

  27. Huynh LN, Vantoai T, Streeter J, Banowetz G (2005) Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J Exp Bot 56:1397–1407

    Article  CAS  Google Scholar 

  28. Iqbal M, Ashraf M (2005) Presowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. J Integr Plant Biol 47:1315–1325

    Article  CAS  Google Scholar 

  29. Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 27:1853–1856

    Article  Google Scholar 

  30. Jiang YW, Carrow RN, Duncan RR (2005) Physiological acclimation of seashore paspalum and bermudagrass to low light. Sci Hortic 105:101–115

    Article  Google Scholar 

  31. Jung S, Kim JS, Cho KY, Tae GS, Kang BG (2000) Antioxidant responses of cucumber (Cucumis sativus) to photoinhibition and oxidative stress induced by norflurazon under high and low PPFDs. Plant Sci 153:145–154

    PubMed  Article  CAS  Google Scholar 

  32. Kamara S, Pflugmacher S (2007) Phragmites australis and Quercus robur leaf extracts affect antioxidative system and photosynthesis of Ceratophyllum demersum. Ecotoxicol Environ Saf 67:240–246

    PubMed  Article  CAS  Google Scholar 

  33. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  34. Kull O, Niinemets U (1993) Variation in leaf morphometry and nitrogen concentration in Betula pendula Roth. Corylus avellana L. & Lonicera xylosteum L. Tree Physiol 12:311–318

    PubMed  Article  Google Scholar 

  35. Lara MEB, Garcia MCG, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  Google Scholar 

  36. Lawlor DW (2009) Musings about the effects of environment on photosynthesis. Ann Bot 103:543–549

    PubMed  Article  CAS  Google Scholar 

  37. Liebig HP, Krug H (1990) Response of cucumber to climate (B). ISHS Acta Horticulturae 287: II International symposium on protected cultivation of vegetables in mild winter climates

  38. Liu XH, Huang BR, Banowetz G (2002) Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci 42:457–465

    Article  CAS  Google Scholar 

  39. Logan BA, Demimig-Adams B, Adams WW, Grace SC (1998) Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. J Exp Bot 49:1869–1879

    CAS  Google Scholar 

  40. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    PubMed  Article  CAS  Google Scholar 

  41. Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    PubMed  Article  CAS  Google Scholar 

  42. Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    PubMed  Article  CAS  Google Scholar 

  43. Naeem MS, Jin ZL, Wan GL, Liu D, Liu HB, Yoneyama K, Zhou WJ (2010) 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant Soil 332:405–415

    Article  CAS  Google Scholar 

  44. Niinemets U (1995) Distribution of foliar carbon and nitrogen across the canopy of Fagus sylvatica: adaptation to a vertical light gradient. Acta Oecol 16:525–541

    Google Scholar 

  45. Ogweno JO, Hu WH, Song XS, Shi K, Mao WH, Zhou YH, Yu JQ (2010) Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul 60:175–182

    Article  CAS  Google Scholar 

  46. Rashotte AM, Chae HS, Maxwell BB, Kieber JJ (2005) The interaction of cytokinin with other signals. Physiol Plant 123:184–194

    Article  CAS  Google Scholar 

  47. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    PubMed  Article  CAS  Google Scholar 

  48. Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    PubMed  Article  CAS  Google Scholar 

  49. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14 Suppl:S185–S205

    PubMed  Google Scholar 

  50. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    PubMed  Article  CAS  Google Scholar 

  51. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    PubMed  Article  CAS  Google Scholar 

  52. Scandalios JG (1994) Regulation and properties of plant catalases. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 275–314

    Google Scholar 

  53. Slooten L, Capiau K, Vancamp W, Vanmontagu M, Sybesma C, Inze D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide-dismutase in the chloroplasts. Plant Physiol 107:737–750

    PubMed  CAS  Google Scholar 

  54. Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  55. Trojan A, Gabrys H (1996) Chloroplast distribution in Arabidopsis thaliana (L.) depends on light conditions during growth. Plant Physiol 111:419–425

    PubMed  CAS  Google Scholar 

  56. Vance RR, Nevai AL (2007) Plant population growth and competition in a light gradient: a mathematical model of canopy partitioning. J Theor Biol 245:210–219

    PubMed  Article  Google Scholar 

  57. Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJJ, Harren FJM, Van Der Straeten D (2003) Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol 133:517–527

    PubMed  Article  CAS  Google Scholar 

  58. Walters RG, Ibrahim DG, Horton P, Kruger NJ (2004) A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light. Plant Physiol 135:891–906

    PubMed  Article  CAS  Google Scholar 

  59. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    PubMed  Article  CAS  Google Scholar 

  60. Williams WE, Gorton HL, Witiak SM (2003) Chloroplast movements in the field. Plant Cell Environ 26:2005–2014

    Article  Google Scholar 

  61. Wingler A, Schaewen AV, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light. Effects of NADH-dependent hydroxypyruvate reductase. Plant Physiol 116:329–355

    Article  CAS  Google Scholar 

  62. Wu FB, Wu LH, Xu FH (1998) Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.). Field Crops Res 56:309–314

    Article  Google Scholar 

  63. Yang XH, Lu CM (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  64. Yang Y, Han C, Liu Q, Lin B, Wang JW (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    Article  CAS  Google Scholar 

  65. Yu JQ, Zhou YH, Huang LF, Allen DJ (2002) Chill-induced inhibition of photosynthesis: genotypic variation within Cucumis sativus. Plant Cell Physiol 43:1182–1188

    PubMed  Article  CAS  Google Scholar 

  66. Zhang XZ, Ervin EH (2004) Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci 44:1737–1745

    Article  CAS  Google Scholar 

  67. Zhang J, Vantoai TT, Huynh LN, Preiszner J (2000) Flooding tolerance of transgenic Arabidopsis plants containing the autoregulated cytokinin biosynthesis system. Mol Breeding 6:135–144

    Article  Google Scholar 

  68. Zhang M, Cao T, Ni LY, Xie P, Li ZQ (2010) Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environ Exp Bot 68:44–50

    Google Scholar 

  69. Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Natural Science Foundation of China (12ZR1449000), Momentous Scientific Research of Agriculture Program of Shanghai, China (number 4-1 (2010)) and Safety Specification and Process Supervision of Cucumber Cultivation Technical Specification of Shanghai, China (11391901600).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Jizhu.

Additional information

D. Xiaotao and J. Yuping contributed equally to this work.

Communicated by U. Feller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiaotao, D., Yuping, J., Hong, W. et al. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiol Plant 35, 1427–1438 (2013). https://doi.org/10.1007/s11738-012-1182-9

Download citation

Keywords

  • Cucumber
  • Low light
  • 6-Benzylaminopurine
  • Photosynthesis
  • Carbohydrate
  • Antioxidant enzymes activities