Skip to main content
Log in

Novel isoforms of proteinaceous α-amylase inhibitor (α-AI) from seed extract of Albizia lebbeck

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Proteinaceous inhibitors of digestive α-amylase occur naturally in leguminous seeds and find applications in agriculture and clinical studies. We have detected and isolated eight novel α-amylase inhibitor isoforms in the seed extract of Albizia lebbeck. They are designated as AL-αAI-1 to AL-αAI-8. These isoforms specifically inhibit human salivary α-amylase and porcine pancreatic α-amylase. The occurrence and profile of α-amylase inhibitor isoforms were revealed by 7 % native-PAGE containing 0.1 % starch. The apparent molecular weights of native bands of AL-αAIs were 97.4, 68.6, 61.0, 57.2, 56.0, 54.7, 51.1, and 47.7 kDa, respectively. Partial purification of potent α-amylase inhibitor was achieved using ammonium sulfate fractionation and gel filtration chromatography on G-100 Sephadex column followed by preparative gel electrophoresis. SDS-PAGE analysis of partially purified AL-αAI showed two polypeptide bands of ~35.8 and ~32.6 kDa. All these isoforms showed effective resistance to in vitro proteolysis by pepsin, trypsin, and chymotrypsin. These inhibitors are stable over a wide range of pH and temperature and have optimum activity at pH 7 and at 37 °C. The finding and information obtained in the present investigation about novel isoforms of α-amylase inhibitors from A. lebbeck could be important and may find applications in clinical studies to modulate starch digestion and glycemic index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

α-AI:

α-Amylase inhibitor

AL-αAI:

Albizia lebbeck α-amylase inhibitor

BPB:

Bromophenol blue

BSA:

Bovine serum albumin

DNSA:

3,5-Dinitrosalicylic acid

HSA:

Human salivary α-amylase

PAGE:

Polyacrylamide gel electrophoresis

PPA:

Porcine pancreatic α-amylase

PVP:

Polyvinylpyrrolidone

References

  • Anthonamma K, Prasad SHKR, Rajasekhar D, Swapna NL, prasad M (2010) In vitro antimicrobial efficacy of solvent extracts of seeds of Albizzia lebbeck (L.) Benth. Int J Adv Pharm Sci 1:281–283

    Google Scholar 

  • Baruah CC, Gupta PP, Patnaik GK, Misra-Bhattacharya S, Goel RK, Kulshreshtha DK, Dubey MP, Dhawan BN (2000) Immunomodulatory effect of Albizzia Lebbeck. Pharm Biol 38(3):161–166

    Google Scholar 

  • Bernfeld P (1955) α-amylases, alpha and beta. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 149–158

    Chapter  Google Scholar 

  • Carlson GL, Li BU, Bass P, Olsen WA (1983) A bean alpha-amylase inhibitor formulation (starch blocker) is ineffective in man. Science 219(4583):393–395

    Article  PubMed  CAS  Google Scholar 

  • Celleno L, Tolaini MV, Damore A, Perricone NV, Preuss HG (2007) A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci 41:45–52

    Article  Google Scholar 

  • Chintawar SD, Somani RS, Kasture VS, Kasture SB (2002) Nootropic activity of Albizzia lebbeck in mice. MAPA 24(6):3451

    Google Scholar 

  • Chokshi D (2006) Toxicity studies of blockal, a dietary supplement containing phase 2 starch neutralizer (Phase 2), a standardized extract of the common white kidney bean (Phaseolus vulgaris). Int J Toxicol 25:361–371

    Article  PubMed  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis-II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427

    Article  PubMed  CAS  Google Scholar 

  • Dayler CSA, Mendes PAM, Prates MV, Bloch C Jr, Franco OL, Grossi-de-Sa MF (2005) Identification of a novel bean α-amylase inhibitor with chitinolytic activity. FEBS Lett 579:5616–5620

    Article  PubMed  CAS  Google Scholar 

  • Fontanini D, Capocchi A, Saviozzi F, Galleschi L (2007) Simplified electrophoretic assay for human salivary α-amylase inhibitor detection in cereal seed flours. J Agric Food Chem 55:4334–4339

    Article  PubMed  CAS  Google Scholar 

  • Fowler MJ (2007) Diabetes treatment part 2: oral agents for glycemic management. Clin Diabetes 25:134–144

    Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Bloch C Jr, Silva CP, Grossi-de-Sa MF (2000) Activity of wheat alpha amylase inhibitors towards bruchid alpha amylases and structural explanation of observed specificities. Eur J Biochem 267:1466–1473

    Article  Google Scholar 

  • Franco DLR, Melo FR, Grossi-de Sá MF (2002) α-Amylase inhibitors and their interaction with insect α-amylase. Structure, function and potential crop protection. Eur J Biochem 269:397–412

    Article  PubMed  CAS  Google Scholar 

  • Gibbs B, Ali I (1998) Characterization of a purified alpha-amylase inhibitor from white kidney beans (Phaseolus vulgaris). Food Res Int 31:217–225

    Article  CAS  Google Scholar 

  • Giri AP, Kachole MS (1998) α-Amylase inhibitors of pigeonpea (Cajanus Cajan) seeds. Phytochemistry 47:197–202

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Chaudhary R, Yadav RK, Verma SK, Dobhal MP (2005) Effect of Saponins of Albizia lebbeck Benth. Bark on the reproductive system of male albino rats. J Ethnopharmacol 96(1–2):31–36

    Article  PubMed  CAS  Google Scholar 

  • Guzman-Partida AM, Jatomea-Fino O, Robles-Burgueno MR, Ortega-Nieblas M, Vazquez-Moreno L (2007) Characterization of a-amylase inhibitor from Palo Fierro seeds. Plant Physiol Biochem 45:711–715

    Article  PubMed  CAS  Google Scholar 

  • Huang WY, Teita NW (1982) Determinations of α-amylase isoenzymesin serum by use of a selective inhibitor. Clin Chem 28:1525–1527

    PubMed  CAS  Google Scholar 

  • Ishimoto M, Kitamura K (1989) Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: bruchidae). Appl Entomol Zool 24:281–286

    Google Scholar 

  • Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI (2005) Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition 21:756–761

    Article  PubMed  CAS  Google Scholar 

  • Kluh I, Horn M, Hyblova J, Hubert J, Doleckova- Maresova L, Voburka Z, Kudlikova I, Kocourek F, Mares M (2005) Inhibitory specificity and insecticidal selectivity of α-amylase inhibitor from Phaseolus vulgaris. Phytochem 66:31–39

    Article  CAS  Google Scholar 

  • Krishna BB, Patrícia BP, Raúl AL, Maria FG, Carlos B Jr, Jorge ATM, Betania FQ, Eliane FN, Octávio LF (2007) Molecular identification of four different α-amylase inhibitors from Baru (Dipteryx alata) seeds with activity toward insect enzymes. J Biochem Mol Biol 40(4):494–500

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Layer P, Carlson GL, DiMagno EP (1985) Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 88:1895–1902

    PubMed  CAS  Google Scholar 

  • LeBerre-Anton V, Bompard-Gilles C, Payan F, Rouge P (1997) Characterization and functional properties of the alpha-amylase inhibitor (alpha A-1) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343:31–40

    Article  CAS  Google Scholar 

  • Leiner IE, Donatrucci DA, Tarcza JC (1984) Starch blockers: a potential source of trypsin inhibitors and lectins. Am J Clin Nutr 39:196–200

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marshall JJ, Lauda CM (1975) Purification and properties of phaseolamine, an inhibitor of α-amylase, from the kidney bean, Phaseolus vulgaris. J Biol Chem 250:8030–8037

    PubMed  CAS  Google Scholar 

  • Matsui T, Tanaka T, Tamura S, Toshima A, Miyata Y, Tanaka K et al (2007) Alpha-glucosidase inhibitory profile of catechins and theaflavins. J Agric Food Chem 55:99–105

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj RH, Pattabiraman TN (1985) Purification and properties of α-amylase inhibitor specific for human pancreatic amylase from proso (Panicium miliaceum) seeds. J Biosci 7(3 & 4):257–268

    Article  CAS  Google Scholar 

  • Ndemanisho E, Kimoro B, Mtengeti E, Muhikambele V (2006) The potential of Albizia lebbeck as a supplementary feed for goats in Tanzania. Agrofor Syst 67:85–91

    Article  Google Scholar 

  • O’Donnell MD, FitzGerald O, McGeeney KF (1977) Differential serum α-amylase determination by use of an inhibitor, and design of a routine procedure. Clin Chem 23:560–566

    PubMed  Google Scholar 

  • Obiro WC, Zhang T, Jiang B (2009) Starch blocking stability of the Phaseolus vulgaris alpha-amylase inhibitor (α-AI1). Am J Food Tech 1:9–19

    Google Scholar 

  • Octavio L, Rigden D (2002) Plant α-amylase inhibitors and their interaction with -α-amylases. Eur J Biochem 269:397–412

    Article  Google Scholar 

  • Olorunsanya AO, Egbewande OO, Ibrahim H, Adeyemo MM (2010) Growth Performance and Carcass Analysis of Broiler Chickens Fed Graded Levels of Toasted Albizia lebbeck Seed Meal. Pak J Nutr 9(9):873–876

    Article  CAS  Google Scholar 

  • Payan F (2004) Structural basis for the inhibition of mammalian and insect alpha-amylases by plant protein inhibitors. Biochim Biophys Acta 1696:171–180

    Article  PubMed  CAS  Google Scholar 

  • Pratibha N, Saxena VS, Amit A, D’Souza P, Bagchi M, Bagchi D (2004) Anti inflammatory activities of Aller-7, a novel polyherbal formulation for allergic rhinitis. Int J Tissue React 26(1–2):43–51

    PubMed  CAS  Google Scholar 

  • Qian M, Nahoum V, Bonicel J, Bischoff H, Henrissat B, Payan F (2001) Enzyme-catalyzed condensation reaction in a mammalian a-amylase highresolution structure analysis of an enzyme-inhibitor complex. Biochemistry 40:7700–7709

    Article  PubMed  CAS  Google Scholar 

  • Resmi CR, Venukumar MR, Latha MS (2006) Antioxidant activity of Albizzia lebbeck (Linn.) Benth in alloxan rats. Indian J Physiol Pharma 50(3):297–302

    CAS  Google Scholar 

  • Richardson M (1991) Methods in Plant Biochemistry. In: Rogers LJ (ed), vol 5. Academic Press, New York, pp 259–305

  • Saha A, Ahmed M (2009) The analgesic and anti-inflammatory activities of the extract of Albizia lebbeck in animal model. Pak J Pharm Sci 22(1):74–77

    PubMed  Google Scholar 

  • Schroeder HE, Gollasch S, Moore AE, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum satiVum L.). Plant Physiol 107:1233–1239

    PubMed  CAS  Google Scholar 

  • Sitthipong P (2005) Amylase, maltase and sucrase inhibitors from red kidney bean (Phaseolus vulgaris). Prince of Songkla University, Faculty of Science

    Google Scholar 

  • Sopade PA, Gidley MJ (2009) A rapid in vitro digestibility assay based on glucometry for investigating kinetics of starch digestion. Starch/Stärke 61:245–255

    Article  CAS  Google Scholar 

  • Svensson B, Fukuda K, Nielsen PK, Bønsager BC (2004) Proteinaceous α-amylase inhibitors. Biochim Biophys Acta 1696:145–156

    Article  PubMed  CAS  Google Scholar 

  • Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE (2004) Hypoglycaemic and anorexigenic activities of α-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats. Br J Nutr 92:785–790

    Article  PubMed  CAS  Google Scholar 

  • Valencia-Jimenez JA, Bustillo AE, Ossa GA, Chrispeels MJR (2000) Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem Mol Biol 30:207–213

    Article  Google Scholar 

  • Xiaoyan H, Jiangui L, Qiughua S, Jusong Z, Xiaoling H, Hao M (2009) Characterization of a novel legumin alpha amylase inhibitor from chickpea (Cicer arietinum L.) seeds. Biosci Biotechnol Biochem 73(5):1200–1202

    Article  Google Scholar 

  • Yamada T, Hattori K, Ishimoto M (2001) Purification and characterization of two α-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray). Phytochemistry 58:59–66

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa H, Kotaru M, Tanaka C, Ikeuchi T, Kawabata M (1999) Characterization of kintoki bean (Phaseolus vulgaris) alpha-amylase inhibitor: inhibitory activities against human salivary and porcine pancreatic alpha-amylases and activity changes by proteolytic digestion. J Nutr Sci Vitaminol 45:797–802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

First author of the manuscript is grateful to University Grant Commission (UGC), Government of India, New Delhi for providing financial assistance in the form of Maulana Azad national fellowship (MANF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiyaz K. Shaikh.

Additional information

Communicated by M. Stobiecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaikh, F.K., Gadge, P.P., Shinde, A.A. et al. Novel isoforms of proteinaceous α-amylase inhibitor (α-AI) from seed extract of Albizia lebbeck . Acta Physiol Plant 35, 901–909 (2013). https://doi.org/10.1007/s11738-012-1133-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1133-5

Keywords

Navigation