Acta Physiologiae Plantarum

, Volume 35, Issue 3, pp 749–761 | Cite as

Variability of phenolic composition and biological activities of two Tunisian halophyte species from contrasted regions

  • Najla TrabelsiEmail author
  • Pierre Waffo-Téguo
  • Mejdi Snoussi
  • Riadh Ksouri
  • Jean Michel Mérillon
  • Abderrazek Smaoui
  • Chedly Abdelly
Original Paper


The present study consists in evaluating the inter- and intraspecific variability of phenolic contents and biological capacities of Limoniastrum monopetalum L. and L. guyonianum Boiss. extracts. Ultimately, they were subjected to HPLC for phenolic identification. Results showed a great variation of phenolic content as function of species and localities. In fact, L. guyonianum extracts (El Akarit) contained the highest polyphenol (57 mg GAE g−1 DW), flavonoid (9.47 mg CE g−1 DW) and condensed tannin contents (106.58 mg CE g−1 DW). These amounts were accompanied by the greatest total antioxidant activity (128.53 mg GAE g−1 DW), antiradical capacity (IC50 = 4.68 μg/ml) and reducing power (EC50 = 120 μg/ml). In addition, L. monopetalum and L. guyonianum extracts exhibited an important and variable antibacterial activity with a diameter of inhibition zone ranging from 6.00 to 14.83 mm. Furthermore, these extracts displayed considerable antifungal activity. L. monopetalum extracts (Enfidha) showed the strongest activity against Candida glabrata and C. krusei with a diameter exceeding 12 mm. The phytochemical investigation of these extracts confirmed the variability of phenolic composition, since the major phenolic compound varied as a function of species and locality. These findings suggest that these two halophytes may be a new source of natural antioxidants that are increasingly important for human consumption, as well as for agro-food, cosmetic and pharmaceutical industries.


Limoniastrum species Provenances Phenolic contents Biological activities HPLC analysis 





Inhibition concentration at 50 %


Effective concentration at which the absorbance was 0.5


Butylated hydroxytoluene


Gallic acid equivalents


Catechin equivalents




Trifluoroacetic acid




American type culture collection


National Collection of Industrial Marine and Food Bacteria


Department of Agriculture


Collection Institut Pasteur


Methicillin resistant





This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (LR10CBBC02), by the Tunisian–French “Comité Mixte de Coopération Universitaire” (CMCU) network # 08G0917 and by the SATREPES Project: “Valorization of Bio-resources in Semi-Arid and Arid Land for Regional Development”.


  1. Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, Rio JA, Otuno A, Quirin KW, Gerard D (2003) Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis and antioxidant activity. J Agric Food Chem 51:4247–4253PubMedCrossRefGoogle Scholar
  2. Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B (2008) Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C R Biol 331:48–55PubMedCrossRefGoogle Scholar
  3. Carbone K, Giannini B, Picchi V, Scalzo RL, Cecchini F (2011) Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chem 127:493–500PubMedCrossRefGoogle Scholar
  4. Carvalho IS, Cavacoa T, Brodelius M (2011) Phenolic composition and antioxidant capacity of six artemisia species. Ind Crop Prod 33:382–388CrossRefGoogle Scholar
  5. Chaieb M, Boukhris M (1998) Flore succincte et illustrée des zones arides et sahariennes de Tunisie. (eds) Association pour la protection de la nature et de l’environnement, Sfax, p 67Google Scholar
  6. Dasgupta N, De B (2007) Antioxidant activity of some leafy vegetables of India: a comparative study. Food Chem 101:471–474CrossRefGoogle Scholar
  7. de Rezende AAA, Graf U, da Rosa Guterresa Z, Kerr WE, Spanó MA (2009) Protective effects of proanthocyanidins of grape (Vitis vinifera L.) seeds on 3 DNA damage induced by doxorubicin in somatic cells of Drosophila melanogaster. Food Chem Toxicol 47:1466–1472PubMedCrossRefGoogle Scholar
  8. Dewanto VX, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014PubMedCrossRefGoogle Scholar
  9. Diouf PN, Stevanovic T, Cloutier A (2009) Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chem 113:897–902CrossRefGoogle Scholar
  10. El Shaer HM (2010) Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Res 91:3–12CrossRefGoogle Scholar
  11. Falleh H, Ksouri R, Oueslati S, Guyot S, Magné C, Abdelly C (2009) Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food Chem Toxicol 47:2308–2313CrossRefGoogle Scholar
  12. Gao CY, Lu YH, Tian CR, Xu JG, Guo XP, Zhou R, Hao G (2011) Main nutrients, phenolics, antioxidant activity, DNA damage protective effect and microstructure of Sphallerocarpus gracilis root at different harvest time. Food Chem 127:615–622PubMedCrossRefGoogle Scholar
  13. Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79PubMedCrossRefGoogle Scholar
  14. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  15. Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem Pharm Bull 36:2090–2097PubMedCrossRefGoogle Scholar
  16. Hosni K, Msaada K, Ben Taârit M, Marzouk B (2011) Phenological variations of secondary metabolites from Hypericum triquetrifolium Turra. Biochem Syst Ecol 39:43–50CrossRefGoogle Scholar
  17. Iqbal M, Ashraf M, Jamil A, Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J Integr Plant Biol 48:181–189CrossRefGoogle Scholar
  18. Jaleel CA, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. S Afr J Bot 74:126–132CrossRefGoogle Scholar
  19. Kamatou GPP, Viljoen AM, Steenkamp P (2010) Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chem 119:684–688CrossRefGoogle Scholar
  20. Kang WS, Lim IH, Yuk DY, Chung KH, Park JB, Yoo HS, Yun YP (1999) Antithrombotic activities of green tea catechins and (−)-epigallocatechin gallate. Thromb Res 96:229–237PubMedCrossRefGoogle Scholar
  21. Karou D, Dicko MH, Simpore J, Traore AS (2005) Antioxidant and antimicrobial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr J Biotechnol 4:823–828Google Scholar
  22. Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–533PubMedCrossRefGoogle Scholar
  23. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091PubMedCrossRefGoogle Scholar
  24. Ksouri R, Megdiche W, Koyro H-W, Abdelly C (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145CrossRefGoogle Scholar
  25. Lee J, Martin RR (2009) Influence of grapevine leaf roll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Phenolics. Food Chem 112:889–896CrossRefGoogle Scholar
  26. Liu H, Wang X, Wang D, Zou Z, Liang Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crop Prod 33:84–88CrossRefGoogle Scholar
  27. Macheix JJ, Fleuriet A, Jay-Allemand C (2005) Les composes phénoliques des végétaux, un exemple de métabolites secondaires d’importance économique, ed Presses Polytechniques et Universitaires Romandes, CH-1015 LausanneGoogle Scholar
  28. Mandel SA, Weinreb O, Amit T, Youdim MBH (2004) Cell signalling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569PubMedCrossRefGoogle Scholar
  29. Medini F, Ksouri R, Falleh H, Megdiche W, Trabelsi N, Abdelly C (2011) Effects of physiological stage and solvent on polyphenol composition, antioxidant and antimicrobial activities of Limonium densiflorum. J Med Plants Res 5:6719–6730Google Scholar
  30. Meot-Duros L, Le Floch G, Magné C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116:258–262PubMedCrossRefGoogle Scholar
  31. Oh M-M, Carey EE, Rajashekar CB (2009) Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578–583PubMedCrossRefGoogle Scholar
  32. Oyaizu M (1986) Studies on products of the browning reaction: antioxidative activities of 599 browning reaction. Jpn J Nutr 44:307–315CrossRefGoogle Scholar
  33. Prieto P, Pineda M, Aguliar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341PubMedCrossRefGoogle Scholar
  34. Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84PubMedCrossRefGoogle Scholar
  35. Romani A, Ieri F, Turchetti B, Mulinacci N, Vincieri FF, Buzzini P (2006) Analysis of condensed and hydrolysable tannins from commercial plant extracts. J Pharm Biomed Anal 41:415–420PubMedCrossRefGoogle Scholar
  36. Romano M, Lograno MD (2009) Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway. Eur J Pharmacol 608:48–53PubMedCrossRefGoogle Scholar
  37. Sánchez-Rodríguez E, Moreno DA, Ferreres F, Rubio-Wilhelmi MDM, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729PubMedCrossRefGoogle Scholar
  38. Shikanga EA, Combrinck S, Regnier T (2010) South African Lippia herbal infusions: total phenolic content, antioxidant and antibacterial activities. S Afr J Bot 76:567–571CrossRefGoogle Scholar
  39. Sun B, Richardo-da-Silvia JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274CrossRefGoogle Scholar
  40. Tadeg H, Mohammed E, Asres K, Gebre-Mariam T (2005) Antimicrobial activities of some selected traditional Ethiopian medicinal plants used in the treatment of skin disorders. J Ethnopharmacol 2:168–175CrossRefGoogle Scholar
  41. Tedeschi E, Suzuki H, Menegazzi M (2002) Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition. Ann NY Acad Sci 973:435–437PubMedCrossRefGoogle Scholar
  42. Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT Food Sci Technol 43:632–639CrossRefGoogle Scholar
  43. Trabelsi N, Falleh H, Jallali I, Ben Daly A, Hajlaoui H, Smaoui A, Ksouri R, Abdelly C (2012a) Variation of phenolic composition and biological activities in Limoniastrum monopetalum L. organs. Acta Physiol Plant 34:87–96CrossRefGoogle Scholar
  44. Trabelsi N, Oueslati S, Falleh H, Waffo-Téguo P, Papastamoulis Y, Mérillon J-M, Abdelly C, Ksouri R (2012b) Isolation of powerful antioxidants from the medicinal halophyte Limoniastrum guyonianum. Food Chem 135:1419–1424Google Scholar
  45. Xu Y, J-j Zhang, Xiong L, Zhang L, Sun D, Liu H (2009) Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J Nutr Biochem 8:741–748Google Scholar
  46. Zarrouk M, El Almi H, Ben Youssef N, Sleimi N, Smaoui A, Ben Miled D, Abdelly C (2003) Lipid composition of local halophytes seeds: Cakile maritima, Zygophyllum album and Crithmum maritimum. In: Lieth H (ed) Cash crop halophytes: recent studies. 10 years after the Al Ain. Kluwer Academic Publishers Group, Dordrecht, p 121–126Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2012

Authors and Affiliations

  • Najla Trabelsi
    • 1
    • 2
    Email author
  • Pierre Waffo-Téguo
    • 2
  • Mejdi Snoussi
    • 3
  • Riadh Ksouri
    • 1
  • Jean Michel Mérillon
    • 2
  • Abderrazek Smaoui
    • 1
  • Chedly Abdelly
    • 1
  1. 1.Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj CédriaHammam-LifTunisia
  2. 2.Laboratoire de Sciences Végétales, Mycologie et Biotechnologie. Groupe d’Etude des Substances Végétales à Activité Biologique (GESVAB) EA 3675, UFR PharmacieInstitut des Sciences de la Vigne et du Vin (ISVV), Université Victor Segalen Bordeaux 2BordeauxFrance
  3. 3.Laboratoire de Traitement et de Recyclage des EauxCentre de Recherches et des Technologies des Eaux, Technopole de Borj-CédriaHammam-LifTunisia

Personalised recommendations