Skip to main content
Log in

Antioxidant responses and water status in Brassica seedlings subjected to boron stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of boron (B) on growth, water status and oxidative damage was investigated in the leaves and roots of 7-day-old seedlings of Brassica juncea var. Varuna. For this seedlings of Brassica were grown in solution culture with variable boron supply (0.033, 0.33, 3.3 and 33 mg B L−1) under controlled conditions in green house. Photosynthetic pigments were found to be decreased more under excess (3.3 and 33 mg B L–1) than deficient boron supply (0.033 mg B L–1) when compared to control (0.33 mg B L–1). Accumulation of hydrogen peroxide and thiobarbituric acid reactive substances content in both leaves and roots under deficient and excess boron supply suggested oxidative damage due to excessive production of reactive oxygen species. Increased activity of antioxidative enzymes: superoxide dismutase, catalase and peroxidase along with polyphenol oxidase was observed in leaves and roots under boron deficiency and excess than in control. Increased proline concentration, decreased total water content and water saturation deficit also indicated the water deficit condition in leaves and roots of boron-stressed Brassica seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAT:

Catalase

DOPA:

3,4-Dihydroxy-1-phenol alanine

H2O2 :

Hydrogen peroxide

POD:

Peroxidase

PPO:

Polyphenol oxidase

RWC:

Relative water content

SOD:

Superoxide dismutase

SWC:

Specific water content

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substances

WSD:

Water saturation deficit

WUC:

Water uptake capacity

References

  • Ahmed M, Jahiruddin M, Mian MH (2007) Screening of wheat genotype for boron efficiency. J Plant Nutr 30:1127–1138

    Article  CAS  Google Scholar 

  • Apostol KG, Zwiazek JJ (2004) Boron and water uptake in jack pine (Pinus banksiana) seedlings. Environ Exp Bot 51:145–153

    Article  CAS  Google Scholar 

  • Apostol KG, Zwiazek JJ, MacKinnon MD (2002) NaCl and Na2SO4 alter responses of jack pine (Pinus banksiana) seedlings to boron. Plant Soil 240:321–329

    Article  CAS  Google Scholar 

  • Ardıc M, Sekmen AH, MacKinnon MD, Turkan I, Tokur S, Ozdemir F (2009) The effects of boron toxicity on root antioxidant systems of two chickpea (Cicer arietinum L.) cultivars. Plant Soil 314:99–108

    Article  Google Scholar 

  • Baisak R, Rana D, Acharaya PB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489–495

    CAS  Google Scholar 

  • Bastías E, Fernández-García N, Carvajal M (2004) Aquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity. Plant Biol 5:415–421

    Article  Google Scholar 

  • Bastías E, Alcaraz-Lόpez C, Bonilla I, Martínez-Ballesta MC, Bolanõs L, Carvajal M (2010) Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. J Plant Physiol 167:54–60

    Article  PubMed  Google Scholar 

  • Bates LS, Walderen RD, Taere ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gel. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Becker DF, Zhu W, Natarajan S (2009) Proline metabolism and protection against oxidative stress. FASEB J 23(678):7

    Google Scholar 

  • Bellaloui N, Brown PH (1998) Cultivar differences in boron uptake and distribution in celery (Apium graveolens), tomato (Lycopersicon esculentum) and wheat (Triticum aestivum). Plant Soil 198:153–158

    Article  CAS  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Ann Rev Plant Physiol Plant Mol Biol 49:481–501

    Article  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    Article  PubMed  CAS  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Cakmak I, Römheld V (1997) Boron deficiency induced impairment of cellular functions in plant. Plant Soil 193:71–83

    Article  CAS  Google Scholar 

  • Cakmak I, Kurz H, Marschner H (1995) Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol Plant 95:11–18

    Article  CAS  Google Scholar 

  • Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Beato VM, Rexach J, Navarro-Gochicoa MT, Maldonado JM, González-Fontes A (2008) The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environ Exp Bot 63:351–358

    Article  Google Scholar 

  • Cervilla LM, Blasco B, Rios JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756

    Article  PubMed  CAS  Google Scholar 

  • Choi EY, Kolesik P, Mcneill A, Collins H, Zhang Q, Huynh B et al (2007) The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.). Plant Cell Environ 30:984–993

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  PubMed  CAS  Google Scholar 

  • Dannel F, Pfeffer H, Römheld V (1998) Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. J Plant Physiol 153:615–622

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198:460–470

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability and mineral constituents of tomato and pepper plants. J Plant Nutr 30:981–994

    Article  CAS  Google Scholar 

  • Han S, Tang N, Jiang H, Yang L, Yan L, Chen L (2009) CO2 assimilation photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn 347(2):32

    Google Scholar 

  • Josten P, Kutschera U (1999) The micronutrient boron causes the development of adventitious roots in sunflower cuttings. Ann Bot 84:337–342

    Article  CAS  Google Scholar 

  • Karabal E, Yucel M, Oktem H (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  • Kobayashi M, Matoh T (2004) Boron nutrition of cultured tobacco BX-2 cells. IV. Genes induced under low B supply. J Exp Bot 55:1441–1443

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu P, Yang YA (2000) Effects of molybdenum and boron on membrane lipid peroxidation and endogenous protective systems of soybean leaves. Acta Bot Sin 42:461–466

    CAS  Google Scholar 

  • Loomis WD, Durst RW (1992) Chemistry and biology of boron. BioFactors 3:229–239

    PubMed  CAS  Google Scholar 

  • Mannan MA, Karim MA, Khaliq QA, Haque MM, Mian MAK, Ahmed JU (2009) Proline accumulation, water status and chlorophyll content in leaf in relation to salt tolerance in soybean. Ind J Plant Physiol 14:130–134

    CAS  Google Scholar 

  • Martínez-Ballesta MC, Bastías E, Zhu C, Schäffner A, Gozalez-Murua B, Gonzalez-Moro C, Carvajal M (2008) Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2 and plasma membrane H+-ATPase in relation to water and nutrient uptake. Physiol Plant 132:479–490

    Article  Google Scholar 

  • Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 198:181–198

    Article  Google Scholar 

  • Ohtuska T, Ito H, Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoprotein by isolated chloroplast. Plant Physiol 113:137–147

    Google Scholar 

  • Pandey N, Archana (2009) Boron-stress induced changes in water status and stomatal morphology in Zea mays L. and Catharanthus roseus L. Ind J Plant Physiol 14:310–314

    CAS  Google Scholar 

  • Pandey N, Archana (2010) Effect of boron on mitotic index and seed germination of sunflower. J Ind Bot Soc 89:293–296

    Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Papadakis I, Dimassi K, Bosabalidis A, Therios I, Patakas A, Ginnakoula A (2004) Boron toxicity in ‘climentine’ mandarin plants grafted on two root stocks. Plant Sci 166:539–547

    Article  CAS  Google Scholar 

  • Plesnicár M, Kastori R, Sakac Z, Pankovic D, Petrovic N (1997) Boron as limiting factor in photosynthesis and growth of sunflower plants in relation to phosphate supply. Agrochimica 41:144–154

    Google Scholar 

  • Polovnikova MG, Voskresenskaya OL (2008) Activities of antioxidant system components and polyphenol oxidase in ontogeny of lawn grasses under megapolis conditions. Russ J Plant Physiol 55:699–705

    Article  CAS  Google Scholar 

  • Power PP, Woods WG (1997) The chemistry of boron and its speciation in plants. Plant Soil 193:1–13

    Article  CAS  Google Scholar 

  • Sairam RK, Deshmukh PS, Saxsena DC (1998) Role of antioxidant system in wheat genotypes tolerance to water stress. Biol Plant 41:384–394

    Article  Google Scholar 

  • Samaras Y, Bressan RA, Csonka LN, Garcia-Rios MG, Paino D, Urzo M, Rhodes D (1995) Proline accumulation during drought and salinity. In: Smirnoff N (ed) Environment and plant metabolism. Bio Scientific Publishers, Oxford, pp 161–187

    Google Scholar 

  • Sangakkara UR, Hartwig UA, Nosberger J (1996) Responses of root branching and shoot water potential of French bean (Phaseolus vulgaris L) to soil moisture and fertilizer potassium. J Agron Crop Sci 177:165–173

    Article  CAS  Google Scholar 

  • Sharma PN, Ramachandra T (1990) Water relations and photosynthesis in mustard plants subjected to boron deficiency. Ind J Plant Physiol 33:150–154

    CAS  Google Scholar 

  • Sharma CP, Sharma PN (1987) Mineral nutrient deficiencies affect plant water relations. J Plant Nutr 10:1637–1643

    Article  CAS  Google Scholar 

  • Shelp BJ (1988) Boron mobility and nutrition in broccoli (Brassica oleracea var. Italica). Ann Bot 61:83–91

    CAS  Google Scholar 

  • Shelp BJ (1993) Physiology and biochemistry of boron in plants. In: Gupta UC (ed) Boron and its role in crop production. CRC Press, Boca Raton, pp 53–85

    Google Scholar 

  • Shenshi H, Noguchi M (1975) Relationship between peroxidase, IAA oxidase and polyphenoloxidase. Phytochemistry 14:1255–1258

    Article  Google Scholar 

  • Sieferman-Harms D (1987) The light harvesting and protective function of carotenoids in photosynthetic membrane. Physiol Plant 69:561–568

    Article  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  Google Scholar 

  • Wan X, Zwiazek JJ (2001) Root water flow and leaf stomatal conductance in aspen (Populus tremuloides) seedlings treated with abscisic acid. Planta 213:741–747

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Tang YL, Zhang FS, Wang H (1999) Effect of boron and low temperature on membrane integrity of cucumber leaves. J Plant Nutr 22:543–550

    Article  CAS  Google Scholar 

  • Wolf B (1971) The determination of boron in soil extracts, plant materials, composts, water and nutrient solutions. Commun Soil Sci Plant Anal 2:363–374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Pandey.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, N., Archana Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiol Plant 35, 697–706 (2013). https://doi.org/10.1007/s11738-012-1110-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1110-z

Keywords

Navigation