Skip to main content

Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L.

Abstract

The aim of the present study was to examine the ability of I. pseudacorus L., an ornamental macrophyte of great potential for phytoremediation, to tolerate and accumulate Cr and Zn. Plants were grown in nutritive solution with ZnCl2 or CrCl3·6H2O at 0, 10, 50, 100, and 200 μg ml−1 for 5 weeks; all survived and continued growing. The accumulation of Cr and Zn increased with increasing supply in all plant tissues, to reach 59.97 mg Cr and 25.64 mg Zn in roots. Leaves retained a remarkable amount of Zn (14.2 mg). Growth inhibition reached 65% and 31% (dry weight) in response to Cr and Zn, respectively. The root:shoot dry matter partitioning (R/S) increased 80% at 100 μg ml−1 CrCl3. The most marked alterations in mineral content were in roots, where both metals decreased Al, Ca, Mg, Mn and S, and increased P concentration. No effect was noted on either leaf chlorophyll fluorescence kinetics (F v /F m and ΦPSII), or photosynthetic pigment content, signifying that the light phase of photosynthesis was not impaired. Carbon isotope composition (δ13C) was only slightly heavier, indicating that the reduction of carbon fixation was not the main cause for growth decrease. This was attributed to the restricted mineral uptake and to the increased demand of carbohydrates of damaged roots. Biomass allocation to rhizomes (Cr) or roots (Zn) contributes to heavy metal tolerance by limiting transpiration and increasing metal–storing tissues and the surface for water and cation uptake. This species is a good candidate for Cr rhizofiltration and Zn phytoextraction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ali NA, Dewez D, Didur O, Popovic R (2006) Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosynth Res 89:81–87. doi:10.1007/s11120-006-9085-5

    PubMed  Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bakker RR, Elbersen HW (2005) Managing ash content and quality in herbaceous biomass: an analysis from plant to product. In: 14th European biomass conference and exhibition, 17–21 October 2005, Paris, France

  • Belmont MA, Metcalfe CD (2003) Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants—a laboratory-scale study. Ecol Eng 21:233–247. doi:10.1016/j.ecoleng.2003.10.003

    Article  Google Scholar 

  • Bonet A, Poschenrieder C, Barceló J (1991) Chromium III - Iron Interaction in Fe-deficient and Fe-sufficient bean plants. 1. Growth and nutrient content. J Plant Nutr 14:403–414. doi:10.1080/01904169109364211

    Article  CAS  Google Scholar 

  • Boutton TW, Archer SR, Milwood AJ, Zitzer SF, Bol R (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41. doi:10.1016/S0016-7061(97)00095-5

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    PubMed  Article  CAS  Google Scholar 

  • Buchner P, Takahashi T, Hawkesford J (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773. doi:10.1093/jxb/erh206

    PubMed  Article  CAS  Google Scholar 

  • Caldelas C, Bort J, Febrero A (2012) Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis. Cell Biol Toxicol 28:57–68. doi:10.1007/s10565-011-9205-7

    PubMed  Article  CAS  Google Scholar 

  • Chandra P, Kulshreshtha K (2004) Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev 70:313–327. doi:10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2

    Article  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74. doi:10.1016/S0269-7491(99)00238-9

    PubMed  Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80. doi:10.1016/j.envpol.2005.08.015

    PubMed  Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70. doi:10.1590/S1677-04202008000100007

    Article  CAS  Google Scholar 

  • Farquhar GD (1983) On the nature of isotope discrimination in C4 species. Aust J Plant Physiol 9:205–226. doi:10.1146/annurev.pp.40.060189.002443

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Han Y, Yuan H, Huang S, Guo Z, Xia B, Gu J (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicol 16:557–563. doi:10.1007/s10646-007-0162-0

    Article  CAS  Google Scholar 

  • Hara T, Sonoda Y (1979) Comparison of the toxicity of heavy metals to cabbage growth. Plant Soil 51:127–133

    Article  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–615. doi:10.1016/j.tplants.2006.10.007

    PubMed  Article  CAS  Google Scholar 

  • Janik E, Maksymiec W, Mazur R, Garstka M, Gruszecki WI (2010) Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale. Plant Cell Physiol 51:1330–1340. doi:10.1093/pcp/pcq093

    PubMed  Article  CAS  Google Scholar 

  • Krall JP, Edwards G (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187. doi:10.1111/j.1399-3054.1992.tb01328.x

    Article  CAS  Google Scholar 

  • Krugh B, Bischham L, Miles D (1994) The solid-state chlorophyll meter, a novel instrument for rapidly and accurately determining the chlorophyll concentration in seedling leaves. Maize Genet Coop News Lett 68:25–27

    Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Kuzovkina YA, Quigley MF (2005) Willow beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204. doi:10.1016/j.ecoleng.2009.03.010

    Article  CAS  Google Scholar 

  • Larue C, Korboulewsky N, Wang RY, Mévy JP (2010) Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations. Bioresour Technol 101:7951–7957. doi:10.1016/j.biortech.2010.05.010

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138. doi:10.1016/j.envint.2006.08.004

    PubMed  Article  CAS  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772. doi:10.1021/es072017o

    PubMed  Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    PubMed  Article  CAS  Google Scholar 

  • Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647. doi:10.1016/j.chemosphere.2008.10.019

    PubMed  Article  CAS  Google Scholar 

  • Oláh V, Lakatos G, Bertók C, Kanalas P, Szőllősi E, Kis J, Mészáros I (2010) Short-term chromium (VI) stress induces different photosynthetic responses in two duckweed species, Lemna gibba L. and Lemna minor L. Photosynthetica 48:513–520. doi:10.1007/s11099-010-0068-6

    Article  Google Scholar 

  • Paiva L, Oliveira J, Azevedo R, Ribeiro D, Silva M, Vitoria A (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409. doi:10.1016/j.envexpbot.2008.11.012

    Article  CAS  Google Scholar 

  • Pavlovič A, Masarovičová E, Král’ová K, Kubová J (2006) Response of chamomile plants (Matricaria recutita L.) to cadmium treatment. Bull Environ Contam Toxicol 77:763–771. doi:10.1007/s00128-006-1129-1

    PubMed  Article  Google Scholar 

  • Polyák K, Hlavay J (1999) Environmental mobility of trace metals in sediments collected in the Lake Balaton. Fresenius J Anal Chem 363:587–593

    Article  Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants. From biomolecules to ecosystems. Springer, Berlin

    Google Scholar 

  • Prasad DDK, Prasad ARK (1987) Altered delta-aminolevulinic-acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J Plant Phys 127:241–249

    Article  CAS  Google Scholar 

  • Prasad MNV, Strzałka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht

    Google Scholar 

  • Price AH, Steele KA, Gorham J, Bridges JM, Moore BJ, Evans JL, Richardson P, Jones RGW (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. I. Root distribution, water use and plant water status. Field Crops Res 76:11–24. doi:10.1016/S0378-4290(02)00012-6

    Article  Google Scholar 

  • Qian JH, Zayed A, Zhu YL, Yu M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448–1455

    Article  CAS  Google Scholar 

  • Qiu S, Huang S (2008) Study on growth and Cd accumulation of root system of Iris pseudacorus seedling under Cd stress. J Plant Res Environ 17:33–38. doi:CNKI:SUN:ZWZY.0.2008-03-007

    Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753. doi:10.1080/10643380801910058

    Article  CAS  Google Scholar 

  • Romanowska E, Igamberdiev AU, Parys E, Gardestrom P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C-3 and C-4 plants. Physiol Plant 116:148–154. doi:10.1034/j.1399-3054.2002.1160203.x

    PubMed  Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–648

    PubMed  Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2001) Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci Total Environ 281:87–98. doi:10.1016/S0048-9697(01)00838-5

    PubMed  Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagem S (2005) Chromium toxicity in plants. Environ Int 31:739–753. doi:10.1016/j.envint.2005.02.003

    PubMed  Article  CAS  Google Scholar 

  • Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132:209–320

    Article  CAS  Google Scholar 

  • Stobrawa K, Lorenc-Plucińska G (2007) Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment. Sci Total Environ 373:157–165. doi:10.1016/j.scitotenv.2006.11.019

    PubMed  Article  CAS  Google Scholar 

  • Todeschini V, Lingua G, D’Agostino G, Carniato F, Roccotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Env Exp Bot 71:50–56. doi:10.1016/j.envexpbot.2010.10.018

    Article  CAS  Google Scholar 

  • USEPA (2005) Priority pollutants. Code of federal regulations. Title 40: protection of environment, chap I. Appendix A to 40 CFR Part 423. 1st July 2005. Environmental Protection Agency

  • Uveges JL, Corbett AL, Mal TK (2002) Effects of lead contamination on the growth of Lythrum salicaria (purple loosestrife). Environ Pollut 120:319–323. doi:10.1016/S0269-7491(02)00144-6

    PubMed  Article  CAS  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575. doi:10.1016/j.chemosphere.2007.02.052

    PubMed  Article  CAS  Google Scholar 

  • Wei L, Yan C, Wu G, Guo X, Ye B (2008) Variation of δ13C in Aegiceras corniculatum seedling induced by cadmium application. Ecotoxicol 17:480–484. doi:10.1007/s10646-008-0201-5

    Article  CAS  Google Scholar 

  • Zhang X, Liu P, Yang Y, Chen W (2007) Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J Environ Sci 19:902–909

    Article  CAS  Google Scholar 

  • Zhou YQ, Huang SZ, Yu SL, Gu JG, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicol 19:69–76. doi:10.1007/s10646-009-0389-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was part of the International Cooperation European Project MEDINDUS, EC Contract No INCO-CT-2004-509159. Experiments were conducted in the experimental field services (Servei de Camps Experimentals) of the Universitat de Barcelona. Sample digestion and determination of element content were performed in the technical services (Serveis Científicotècnics) of the Universitat de Barcelona. We wish to thank their personnel for their collaboration and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Caldelas.

Additional information

Communicated by K. Strzalka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caldelas, C., Araus, J.L., Febrero, A. et al. Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L.. Acta Physiol Plant 34, 1217–1228 (2012). https://doi.org/10.1007/s11738-012-0956-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0956-4

Keywords

  • Heavy metal
  • Abiotic stress
  • Toxicity
  • Phytoremediation
  • Macrophyte
  • Isotope