Advertisement

Acta Physiologiae Plantarum

, Volume 34, Issue 3, pp 1217–1228 | Cite as

Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L.

  • C. CaldelasEmail author
  • J. L. Araus
  • A. Febrero
  • J. Bort
Original Paper

Abstract

The aim of the present study was to examine the ability of I. pseudacorus L., an ornamental macrophyte of great potential for phytoremediation, to tolerate and accumulate Cr and Zn. Plants were grown in nutritive solution with ZnCl2 or CrCl3·6H2O at 0, 10, 50, 100, and 200 μg ml−1 for 5 weeks; all survived and continued growing. The accumulation of Cr and Zn increased with increasing supply in all plant tissues, to reach 59.97 mg Cr and 25.64 mg Zn in roots. Leaves retained a remarkable amount of Zn (14.2 mg). Growth inhibition reached 65% and 31% (dry weight) in response to Cr and Zn, respectively. The root:shoot dry matter partitioning (R/S) increased 80% at 100 μg ml−1 CrCl3. The most marked alterations in mineral content were in roots, where both metals decreased Al, Ca, Mg, Mn and S, and increased P concentration. No effect was noted on either leaf chlorophyll fluorescence kinetics (F v /F m and ΦPSII), or photosynthetic pigment content, signifying that the light phase of photosynthesis was not impaired. Carbon isotope composition (δ13C) was only slightly heavier, indicating that the reduction of carbon fixation was not the main cause for growth decrease. This was attributed to the restricted mineral uptake and to the increased demand of carbohydrates of damaged roots. Biomass allocation to rhizomes (Cr) or roots (Zn) contributes to heavy metal tolerance by limiting transpiration and increasing metal–storing tissues and the surface for water and cation uptake. This species is a good candidate for Cr rhizofiltration and Zn phytoextraction.

Keywords

Heavy metal Abiotic stress Toxicity Phytoremediation Macrophyte Isotope 

Notes

Acknowledgments

This study was part of the International Cooperation European Project MEDINDUS, EC Contract No INCO-CT-2004-509159. Experiments were conducted in the experimental field services (Servei de Camps Experimentals) of the Universitat de Barcelona. Sample digestion and determination of element content were performed in the technical services (Serveis Científicotècnics) of the Universitat de Barcelona. We wish to thank their personnel for their collaboration and advice.

References

  1. Ali NA, Dewez D, Didur O, Popovic R (2006) Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosynth Res 89:81–87. doi: 10.1007/s11120-006-9085-5 PubMedCrossRefGoogle Scholar
  2. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  3. Bakker RR, Elbersen HW (2005) Managing ash content and quality in herbaceous biomass: an analysis from plant to product. In: 14th European biomass conference and exhibition, 17–21 October 2005, Paris, FranceGoogle Scholar
  4. Belmont MA, Metcalfe CD (2003) Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants—a laboratory-scale study. Ecol Eng 21:233–247. doi: 10.1016/j.ecoleng.2003.10.003 CrossRefGoogle Scholar
  5. Bonet A, Poschenrieder C, Barceló J (1991) Chromium III - Iron Interaction in Fe-deficient and Fe-sufficient bean plants. 1. Growth and nutrient content. J Plant Nutr 14:403–414. doi: 10.1080/01904169109364211 CrossRefGoogle Scholar
  6. Boutton TW, Archer SR, Milwood AJ, Zitzer SF, Bol R (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41. doi: 10.1016/S0016-7061(97)00095-5 CrossRefGoogle Scholar
  7. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702PubMedCrossRefGoogle Scholar
  8. Buchner P, Takahashi T, Hawkesford J (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773. doi: 10.1093/jxb/erh206 PubMedCrossRefGoogle Scholar
  9. Caldelas C, Bort J, Febrero A (2012) Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis. Cell Biol Toxicol 28:57–68. doi: 10.1007/s10565-011-9205-7 PubMedCrossRefGoogle Scholar
  10. Chandra P, Kulshreshtha K (2004) Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev 70:313–327. doi: 10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2 CrossRefGoogle Scholar
  11. Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74. doi: 10.1016/S0269-7491(99)00238-9 PubMedCrossRefGoogle Scholar
  12. Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80. doi: 10.1016/j.envpol.2005.08.015 PubMedCrossRefGoogle Scholar
  13. Dhir B, Sharmila P, Pardha Saradhi P (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70. doi: 10.1590/S1677-04202008000100007 CrossRefGoogle Scholar
  14. Farquhar GD (1983) On the nature of isotope discrimination in C4 species. Aust J Plant Physiol 9:205–226. doi: 10.1146/annurev.pp.40.060189.002443 CrossRefGoogle Scholar
  15. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi: 10.1016/S0304-4165(89)80016-9 CrossRefGoogle Scholar
  16. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18Google Scholar
  17. Han Y, Yuan H, Huang S, Guo Z, Xia B, Gu J (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicol 16:557–563. doi: 10.1007/s10646-007-0162-0 CrossRefGoogle Scholar
  18. Hara T, Sonoda Y (1979) Comparison of the toxicity of heavy metals to cabbage growth. Plant Soil 51:127–133CrossRefGoogle Scholar
  19. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–615. doi: 10.1016/j.tplants.2006.10.007 PubMedCrossRefGoogle Scholar
  20. Janik E, Maksymiec W, Mazur R, Garstka M, Gruszecki WI (2010) Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale. Plant Cell Physiol 51:1330–1340. doi: 10.1093/pcp/pcq093 PubMedCrossRefGoogle Scholar
  21. Krall JP, Edwards G (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187. doi: 10.1111/j.1399-3054.1992.tb01328.x CrossRefGoogle Scholar
  22. Krugh B, Bischham L, Miles D (1994) The solid-state chlorophyll meter, a novel instrument for rapidly and accurately determining the chlorophyll concentration in seedling leaves. Maize Genet Coop News Lett 68:25–27Google Scholar
  23. Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266CrossRefGoogle Scholar
  24. Kuzovkina YA, Quigley MF (2005) Willow beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204. doi: 10.1016/j.ecoleng.2009.03.010 CrossRefGoogle Scholar
  25. Larue C, Korboulewsky N, Wang RY, Mévy JP (2010) Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations. Bioresour Technol 101:7951–7957. doi: 10.1016/j.biortech.2010.05.010 CrossRefGoogle Scholar
  26. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  27. Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138. doi: 10.1016/j.envint.2006.08.004 PubMedCrossRefGoogle Scholar
  28. Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772. doi: 10.1021/es072017o PubMedCrossRefGoogle Scholar
  29. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  30. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi: 10.1093/jexbot/51.345.659 PubMedCrossRefGoogle Scholar
  31. Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647. doi: 10.1016/j.chemosphere.2008.10.019 PubMedCrossRefGoogle Scholar
  32. Oláh V, Lakatos G, Bertók C, Kanalas P, Szőllősi E, Kis J, Mészáros I (2010) Short-term chromium (VI) stress induces different photosynthetic responses in two duckweed species, Lemna gibba L. and Lemna minor L. Photosynthetica 48:513–520. doi: 10.1007/s11099-010-0068-6 CrossRefGoogle Scholar
  33. Paiva L, Oliveira J, Azevedo R, Ribeiro D, Silva M, Vitoria A (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409. doi: 10.1016/j.envexpbot.2008.11.012 CrossRefGoogle Scholar
  34. Pavlovič A, Masarovičová E, Král’ová K, Kubová J (2006) Response of chamomile plants (Matricaria recutita L.) to cadmium treatment. Bull Environ Contam Toxicol 77:763–771. doi: 10.1007/s00128-006-1129-1 PubMedCrossRefGoogle Scholar
  35. Polyák K, Hlavay J (1999) Environmental mobility of trace metals in sediments collected in the Lake Balaton. Fresenius J Anal Chem 363:587–593CrossRefGoogle Scholar
  36. Prasad MNV (2004) Heavy metal stress in plants. From biomolecules to ecosystems. Springer, BerlinGoogle Scholar
  37. Prasad DDK, Prasad ARK (1987) Altered delta-aminolevulinic-acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J Plant Phys 127:241–249CrossRefGoogle Scholar
  38. Prasad MNV, Strzałka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, DordrechtGoogle Scholar
  39. Price AH, Steele KA, Gorham J, Bridges JM, Moore BJ, Evans JL, Richardson P, Jones RGW (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. I. Root distribution, water use and plant water status. Field Crops Res 76:11–24. doi: 10.1016/S0378-4290(02)00012-6 CrossRefGoogle Scholar
  40. Qian JH, Zayed A, Zhu YL, Yu M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448–1455CrossRefGoogle Scholar
  41. Qiu S, Huang S (2008) Study on growth and Cd accumulation of root system of Iris pseudacorus seedling under Cd stress. J Plant Res Environ 17:33–38. doi: CNKI:SUN:ZWZY.0.2008-03-007 Google Scholar
  42. Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753. doi: 10.1080/10643380801910058 CrossRefGoogle Scholar
  43. Romanowska E, Igamberdiev AU, Parys E, Gardestrom P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C-3 and C-4 plants. Physiol Plant 116:148–154. doi: 10.1034/j.1399-3054.2002.1160203.x PubMedCrossRefGoogle Scholar
  44. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–648PubMedCrossRefGoogle Scholar
  45. Samecka-Cymerman A, Kempers AJ (2001) Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci Total Environ 281:87–98. doi: 10.1016/S0048-9697(01)00838-5 PubMedCrossRefGoogle Scholar
  46. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagem S (2005) Chromium toxicity in plants. Environ Int 31:739–753. doi: 10.1016/j.envint.2005.02.003 PubMedCrossRefGoogle Scholar
  47. Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132:209–320CrossRefGoogle Scholar
  48. Stobrawa K, Lorenc-Plucińska G (2007) Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment. Sci Total Environ 373:157–165. doi: 10.1016/j.scitotenv.2006.11.019 PubMedCrossRefGoogle Scholar
  49. Todeschini V, Lingua G, D’Agostino G, Carniato F, Roccotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Env Exp Bot 71:50–56. doi: 10.1016/j.envexpbot.2010.10.018 CrossRefGoogle Scholar
  50. USEPA (2005) Priority pollutants. Code of federal regulations. Title 40: protection of environment, chap I. Appendix A to 40 CFR Part 423. 1st July 2005. Environmental Protection AgencyGoogle Scholar
  51. Uveges JL, Corbett AL, Mal TK (2002) Effects of lead contamination on the growth of Lythrum salicaria (purple loosestrife). Environ Pollut 120:319–323. doi: 10.1016/S0269-7491(02)00144-6 PubMedCrossRefGoogle Scholar
  52. Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575. doi: 10.1016/j.chemosphere.2007.02.052 PubMedCrossRefGoogle Scholar
  53. Wei L, Yan C, Wu G, Guo X, Ye B (2008) Variation of δ13C in Aegiceras corniculatum seedling induced by cadmium application. Ecotoxicol 17:480–484. doi: 10.1007/s10646-008-0201-5 CrossRefGoogle Scholar
  54. Zhang X, Liu P, Yang Y, Chen W (2007) Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J Environ Sci 19:902–909CrossRefGoogle Scholar
  55. Zhou YQ, Huang SZ, Yu SL, Gu JG, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicol 19:69–76. doi: 10.1007/s10646-009-0389-z CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2012

Authors and Affiliations

  • C. Caldelas
    • 1
    Email author
  • J. L. Araus
    • 1
  • A. Febrero
    • 1
  • J. Bort
    • 1
  1. 1.Unit of Plant Physiology, Department of Plant Biology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations