Skip to main content
Log in

A proteomic approach analysing the Arabidopsis thaliana response to virulent and avirulent Pseudomonas syringae strains

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present work is directed at studying changes at the proteome level in Arabidopsis thaliana leaves in response to Pseudomonas syringae virulent (Pst) and avirulent (Pst avrRpt2) strains. Arabidopsis leaves were sampled from challenged plants at 4, 8 and 24 h post inoculation. Proteins were TCA–acetone–phenol extracted and subjected to 2-DE (5–8 pH range) and MS/MS (MALDI–TOF–TOF) analysis. Out of 800 matched spots on each of the 36 gels analysed, 147 spots were either absent in at least one of the conditions studied (time or treatments; qualitative variable spots) or differentially accumulated between time and treatments (quantitative variable spots). Out of the 24 proteins successfully identified over TAIR10 database, 23 have not been reported previously in similar proteomics studies of the Arabidopsis thalianaPseudomonas syringae interaction. The exhaustive statistical analysis performed, including principal component and heat map, showed that 24 h post inoculation can clearly discriminate the challenged plants from the control. The protein change occurred early (4 h post inoculation) following the virulent pathogen infection, whereas the change occurred later (24 h post inoculation) following the avirulent pathogen inoculation. Concerning the variable proteins, three behavioural groups can be observed: group 1 (common protein changes in response to virulent and avirulent pathogen infection), group 2 (protein changes in response to virulent pathogen infection) and group 3 (protein changes in response to avirulent pathogen infection). Differential identified proteins following the pathogen infection belonged to different groups including those of oxidative stress defence, enzymes of metabolic pathways and molecular chaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bashan Y, Sharon E, Okon Y, Henis Y (1981) Scanning electron and light microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomato. Physiol Plant Pathol 19:139–144

    Google Scholar 

  • Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Ehlers-Loureiro M, Fernie AR (2003) Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335

    Article  PubMed  CAS  Google Scholar 

  • Chich JF, David O, Villers F, Schaeffer B, Lutomski D, Huet S (2007) Statistics for proteomics: experimental design and 2-DE differential analysis. J Chromatogr B 849:261–272

    Article  CAS  Google Scholar 

  • Chivasa S, Hamilton JM, Pringle RS, Ndimba BK, Simon WJ, Lindsey K, Slabas AR (2006) Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. J Exp Bot 57:1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Cho MS, Shin SH, Kim KS, Kim YC, Eun MY, Cho BH (2004) Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens. Mol Cells 18:390–395

    PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in g-glutamylcysteine synthetase. Plant J 16:73–78

    Article  PubMed  CAS  Google Scholar 

  • Collmer A, Lindeberg M, Petnicki-Ocwieja T, Schneider DJ, Alfano JR (2002) Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol 10:462–469

    Article  PubMed  CAS  Google Scholar 

  • Cornels H, Ichinose Y, Barz W (2000) Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L.): accumulation in response to fungal infection and other stress factors. Plant Sci 154:83–88

    Article  PubMed  CAS  Google Scholar 

  • Cuppels DA (1986) Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol 51:323–327

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • De Vienne D, Bost B, Fiévet J, Zivy M, Dillmann C (2001) Genetic variability of proteome expression and metabolic control. Plant Physiol Biochem 39:271–283

    Article  Google Scholar 

  • Desimone M, Wagner E, Johanningmeier U (1998) ATP-dependent proteolytic activity of chloroplasts degrades active oxygen modified ribulose 1,5-biphophate carboxylase/oxygenase. Planta 205:459–466

    Article  CAS  Google Scholar 

  • Dong X, Mindrinos M, Davis KR, Ausubel FM (1991) Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3:61–72

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Fang RX, Pang Z, Gao DM, Mang KG, Chua NH (1991) cDNA sequence of a virus-inducible, glycine-rich protein gene from rice. Plant Mol Biol 17:1255–1257

    Article  PubMed  CAS  Google Scholar 

  • Finnie C, Bak-Jensen KS, Laugesen S, Roepstorff P, Svensson B (2006) Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci 170:808–821

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. Plant J 33:691–705

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Li GJ, Wang SB, Zhu H, Zhu T, Wang X, Xia Y (2007) AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol 145:204–215

    Article  PubMed  CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene which enables dual-specificity disease resistance. Science 269:843–846

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson JS, Robert C, Glasbey CA, Blomberg A, Rudemo M (2004) Statistical exploration of variation in quantitative two-dimensional gel electrophoresis data. Proteomics 4:3791–3799

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Shimizu S, Makino A, Mae T (1998) Light-dependent fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves. Planta 204:305–309

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Makino A, Mae T (1999) Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329. J Biol Chem 274:5222–5226

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen S, Grove H, Jensen KN, Sørensen HA et al (2007) Multivariate analysis of 2-DE protein patterns—practical approaches. Electrophoresis 28:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Penaganti A, Tang Y, Mahalingam R (2010) Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC Plant Biol 10:173. doi:10.1186/1471-2229-10-173

    Article  PubMed  Google Scholar 

  • Jelitto-Van DEP, Vidal S, Denecke J (1999) Anticipating endoplasmic reticulum stress: a novel early response before pathogenesis-related gene induction. Plant Cell 11:1935–1943

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Thomas V, Truman B, Lilley K, Mansfield J, Grant M (2004) Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochem 65:1805–1816

    Article  CAS  Google Scholar 

  • Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    Article  PubMed  CAS  Google Scholar 

  • Jorge I, Navarro RM, Lenz C, Ariza D, Porras C, Jorrin J (2005) The holm oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234

    Article  PubMed  CAS  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental. J Proteomics 72:285–314

    Article  PubMed  Google Scholar 

  • Kelly BS, Antholine WE, Griffith OW (2002) Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding. Biol Chem 277:50–58

    CAS  Google Scholar 

  • Kim MG, Kim SY, Kim WY, Mackey D, Lee SY (2008) Responses of Arabidopsis thaliana to challenge by Pseudomonas syringae. Mol Cells 25:323–331

    PubMed  CAS  Google Scholar 

  • Kimura Y, Yahara I, Lindquist S (1995) Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268:1362–1365

    Article  PubMed  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocianin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Kohler G, Linkert C, Barz W (1995) Infection Studies of Cicer arietinum (L.) with GUS-(E. coli b-glucuronidase) transformed Ascochyta rabiei strains. J Phytopathol 143:589–595

    Article  Google Scholar 

  • Laemmli UK (1979) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Leelavathi S, Bhardwaj A, Kumar S, Dass A, Pathak R, Pandey SS, Tripathy BC, Padmalatha KV, Dhandapani G, Kanakachari M, Kumar PA, Cella R, Reddy SV (2011) Genome-wide transcriptome and proteome analyses of tobacco psaA and psbA deletion mutants. Plant Mol Biol 76:407–423

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Olsen LJ (2001) Peroxisomal alanine:glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498

    Article  PubMed  CAS  Google Scholar 

  • Luo S, Ishida H, Makino A, Mae T (2002) Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1, 5-bisphosphate carboxylase close to the active site. J Biol Chem 277:12382–12387

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Echevarria-Zomeno S, Jean-Baptiste S, Hernandez M, Jorrin-Novo JV (2008) Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. J Proteomics 71:461–472

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Echevarria-Zomeno S, Lindermayr C, Redondo-López I, Durner J, Jorrín-Novo J (2011) Proteomic analysis of Arabidopsis protein S-nitrosylation in response to inoculation with Pseudomonas syringae. Acta Physiol Plant. doi:10.1007/s11738-010-0688-2

  • Mateo A, Muhlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  PubMed  CAS  Google Scholar 

  • Meunier B, Dumas E, Piec I, Béchet D, Hébraud M, Hocquette JF (2007) Assessment of hierarchical clustering methodologies for proteomic data mining. J Proteome Res 6:358–366

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Mena M, Carbonero P, García-Olmedo F (1997) Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol Biol 33:803–810

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SM, Park KS, Yi SY, Lee HW, Bok SH, Choi D (1998) A glycinerich RNA-binding protein gene is differentially expressed during acute hypersensitive response following Tobacco Mosaic Virus infection in tobacco. Plant Mol Biol 37:571–576

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2009) Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. Plant J 57:289–301

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Twigg P, Dobritsa S, Guan C, Mullin BC (1997) A nodule-specific gene family from Alnus glutinosa encodes glycine- and histidine-rich proteins expressed in the early stages of actinorhizal nodule development. Mol Plant Microbe Interact 10:656–664

    Article  PubMed  CAS  Google Scholar 

  • Ramagli LS, Rodríguez LV (1985) Quantitation of microgram amounts of protein in two-dimensional polyacrylamide-gel electrophoresis sample buffer electrophoresis. Electrophoresis 6:559–563

    Article  CAS  Google Scholar 

  • Richman PG, Meister A (1975) The chemistry of glutathione: the work of Alton Meister. J Biol Chem 250:1422–1426

    PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Nitric oxide signalling functions in plant–pathogen interactions. Cell Microbiol 6:795–803

    Article  PubMed  CAS  Google Scholar 

  • Ryser U, Schorderet M, Zhao GF, Studer D, Ruel K, Hauf G, Keller B (1997) Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein. Plant J 12:97–111

    Article  PubMed  CAS  Google Scholar 

  • Scarpeci TE, Valle EM (2008) Rearrangement of carbon metabolism in Arabidopsis thaliana subjected to oxidative stress condition: an emergency survival strategy. Plant Growth Regul 54:133–142

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. PNAS 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing 23 of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  Google Scholar 

  • Sghaier-Hammami B, Drira N, Jorrín-Novo J (2009a) Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. J Proteomics 1:161–177

    Article  Google Scholar 

  • Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo J (2009b) Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9:2543–2554

    Article  PubMed  CAS  Google Scholar 

  • Sghaier-Hammami B, Jorrín-Novo J, Gargouri-Bouzid R, Drira N (2011) Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. Phytochemistry 71:1223–1236

    Article  Google Scholar 

  • Sharov AA, Dudekula DB, Ko MS (2005) A web-based tool for PC and significance analysis of microarray data. Bioinformatics 21:2548–2549

    Article  PubMed  CAS  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  PubMed  CAS  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant ER genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Rolee SA, Scholes JD (1996) The effect of Albugo Candida (white blister rust) on the photosynthetic and carbohydrate metabolism of leaves of Arabidopsis thaliana. Plant Cell Environ 19:967–975

    Article  CAS  Google Scholar 

  • Truman W, De Torres Zabala M, Grant M (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defense responses during pathogenesis and resistance. Plant J 46:14–33

    Article  PubMed  CAS  Google Scholar 

  • Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354

    Article  PubMed  CAS  Google Scholar 

  • Valledor L, Jorrín J (2011) Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    Article  PubMed  CAS  Google Scholar 

  • Valledor L, Castillejo MA, Lenz C, Rodríguez R, Cañal MJ, Jorrín J (2008) Proteomic analysis of Pinus radiata needles: 2-DE map and protein identification by LC/MS/MS and substitution-tolerant database searching. J Proteome Res 7:2616–2631

    Article  PubMed  CAS  Google Scholar 

  • Van Kan JAL, Cornelissen BJC, Bol JF (1988) A virus-inducible tobáceo gene encoding a glycine-rich protein shares putative regulatory elements with the ribulose bisphosphate carboxylase small subunit gene. Mol Plant Microbe Interact 1:107–112

    Article  PubMed  Google Scholar 

  • Vinotha SP, Parthasarathi K, Ranganathanrefr LS (2000) Current science, enhanced phosphatase activity in earthworm casts is more of microbial origin. Sci Corresp 79:9–10

    Google Scholar 

  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B 355:1517–1529

    Article  CAS  Google Scholar 

  • Zhang G, Fenyö D, Neubert TA (2009) Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. J Proteome Res 8:1285–1292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from the Spanish ‘‘Ministerio de Educación y Ciencia’’, Project BIO-2006-14790. Besma Sghaier-Hammami is supported by a Grant from the Spanish “La Agencia Española para la Cooperación Internacional”. We gratefully acknowledge support from Dr. Consuelo Gómez (Proteomics Service, University of Córdoba) and Dr. Lola Gutiérrez Blázquez (Proteomics Service, University of Madrid) for mass spectrometry facilities and technical assistance. Thanks to Professor Diana Puntas for his help with the English text. Especially thanks to Salvador Martínez de Bartolomé Izquierdo (ProteoRed, National Center for Biotechnology, Madrid Spain) and David Ovelleiro (PRIDE Group Proteomics Services Team, Hinxton, Cambridge, UK) for their helps in the submission of the data in PRIDE repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besma Sghaier-Hammami.

Additional information

Communicated by M. Stobiecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1: Symptom development on leaves of non-inoculated plants (Col-0), mock-inoculated plants with a 10-mM MgCl2 solution (M) and plants inoculated by virulent (V) and avirulent (A) pathogens during 4, 8 and 24 h post inoculation. No symptoms are observed on non-inoculated and infiltrated plants. Leaves inoculated with virulent strain, presented humid chlorotic lesions only at 24 hpi, which spread over the leaf surface (indicated with a red arrow). However, leaves inoculated with the avirulent strain presented a limit lesion in the leaf starting at 8 hpi (indicated by red arrows).

Supplementary Fig. 2: SDS-PAGE analysis of total proteins of non-inoculated plants (Col-0), mock-inoculated plants with a 10-mM MgCl2 solution (M) and plants inoculated by virulent (V) and avirulent (A) pathogens, during 4, 8 and 24 h post inoculation (hpi). Mr: molecular marker. 20 μg of protein was charged in each line.

Supplementary Fig. 3: Representative Coomassie blue-stained 2-DE gel of non-inoculated plants. Gels were performed on 7 cm immobilized pH gradient (linear pH 3–10) strips. 300 μg of proteins were loaded. The TCA–acetone–phenol protocol extraction was used.

Supplementary material 1 (TIFF 1784 kb)

Supplementary material 2 (TIFF 1149 kb)

Supplementary material 3 (TIFF 3418 kb)

Supplementary material 4 (XLSX 42 kb)

Supplementary material 5 (DOC 44 kb)

Supplementary material 6 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sghaier-Hammami, B., Redondo-López, I., Maldonado-Alconada, A.M. et al. A proteomic approach analysing the Arabidopsis thaliana response to virulent and avirulent Pseudomonas syringae strains. Acta Physiol Plant 34, 905–922 (2012). https://doi.org/10.1007/s11738-011-0888-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0888-4

Keywords

Navigation