Skip to main content

Effects of UV radiation and water limitation on the volatile terpene emission rates, photosynthesis rates, and stomatal conductance in four Mediterranean species

Abstract

This study examined the effects of the combination of UV radiation and water limitation on the leaf photosynthesis, stomatal conductance, and terpene emissions of four Mediterranean species. 1-year-old seedlings of these Mediterranean species [Daphne gnidium L., Pistacia lentiscus L., Ilex aquifolium L. and Laurus nobilis L.] were grown under one of three UV treatments (without UV, with UVA, or with UVA + UVB) and two watering regimes (high and low water supply). In general, UV treatments did not affect significantly leaf photosynthesis or stomatal conductance, although UVA and UVB radiation in September led to a reduction in leaf stomatal conductance in D. gnidium. Leaf photosynthesis rates did not differ significantly between the two watering treatments, even though, in three of the species, leaf stomatal conductance was significantly higher among the well-watered plants. The effects of UV on terpene emissions were species-specific; D. gnidium had the highest terpene emission rates when grown under UVA + UVB radiation, which was also true for L. nobilis in September. Overall, UV treatments did not have a significant effect on total terpene emission rates in I. aquifolium, but UVB and UVA in July and September, respectively, reduced emission rates in P. lentiscus. A limited water supply reduced the terpene emission rates in D. gnidium, increased emissions in L. nobilis, and did not affect the emission rates in the other two species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

UVA:

Ultraviolet A

UVB:

Ultraviolet B

UV0:

Without UV

HWT:

High water treatment

LWT:

Low water treatment

References

  1. Agrawal SB, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. Advances in botanical research: oxidative stress and redox regulation in plants. Adv Bot Res 52:47–86

    Article  CAS  Google Scholar 

  2. Albert KR, Rinnan R, Ro-Poulsen H, Mikkelsen TN, Hakansson KB, Arndal MF, Michelsen A (2008) Solar ultraviolet-B radiation at Zackenberg: the impact on higher plants and soil microbial communities. Adv Ecol Res 40:421–440

    Article  Google Scholar 

  3. Allen DJ, Nogues S, Baker NR (1998) Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J Exp Bot 49:1775–1788

    Article  CAS  Google Scholar 

  4. Ballaré CL, Barnes PW, Kendrick RE (1991) Photomorphogenic effects of UV-B radiation on hypocotyl elongation in wild-type and stable-phytochrome-deficient mutant seedlings of cucumber. Physiol Plant 83:652–658

    Article  Google Scholar 

  5. Barta C, Kalai T, Hedig K, Vass I, Hedig E (2004) Differences in the ROS-generating efficacy of various ultravioletwavelengths in detached spinach leaves. Funct Plant Biol 31:23–28

    Article  CAS  Google Scholar 

  6. Bernal M, Llorens L, Badosa J, Verdaguer D. Interactive effects of UVB radiation and water availability on seedlings of 6 woody Mediterranean species (in preparation)

  7. Blande JD et al (2009) Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced UV-B irradiation. Environ Pollut 157:174–180

    PubMed  Article  CAS  Google Scholar 

  8. Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate. Response profiles are distinguished in mature arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH1[W][OA]. Plant Physiol 146:576–588

    PubMed  Article  CAS  Google Scholar 

  9. Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology. Academic Press, New York, pp 131–177

    Google Scholar 

  10. Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119:24–35

    Article  Google Scholar 

  11. Dsurney SJ, Tschaplinski TJ, Edwards NT et al (1993) Biological responses of 2 soybean cultivars exposed to enhanced UVB radiation. Environ Exp Bot 33:347–356

    Article  CAS  Google Scholar 

  12. Filella I, Peñuelas J (1999) Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododedron ferrugineum in the Mediterranean region. Plant Ecol 145:157–162

    Article  Google Scholar 

  13. Fortunati A et al (2008) Isoprene emission is not temperature dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697

    PubMed  Article  CAS  Google Scholar 

  14. Guenther A, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 93:12609–12617

    Article  Google Scholar 

  15. Guenther A, Zimmerman P, Wildermuth M (1994) Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos Environ 28:1197–1210

    Article  CAS  Google Scholar 

  16. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  17. Hansen U, Van Eijk J, Bertin N, Staudt M, Kotzias D, Seufert G, Fugit JL, Torres L, Cecinato A, Brancaleoni E, Cicciolo P, Bomboi T (1997) Biogenic emissions and CO2 gas exchange investigated on four Mediterranean shrubs. Atmos Environ 31((SI)):157–167

    Article  CAS  Google Scholar 

  18. Harley P, Deem G, Flint S, Caldwell M (1996) Effects of growth under elevated UV-B on photosynthesis and isoprene emission in Quercus gambelii and Mucuna pruriens. Global Change Biol 2:149–154

    Article  Google Scholar 

  19. IPCC (2007) The physical science basis. Contribution of working group I. In: Solomon S et al (eds) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, USA, pp 1–996

    Google Scholar 

  20. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annual Rev Plant Biol 60:407–431

    Article  CAS  Google Scholar 

  21. Kalbina I, Li S, Kalbin G, Bjorn LO BJ, Strid A (2008) Two separate UV-B radiation wavelength regions control expression of different molecular markers in Arabidopsis thaliana. Funct Plant Biol 35:222–227

    Article  CAS  Google Scholar 

  22. Lingakumar K, Kulandaivelu G (2006) UV-B radiation: its effects and defense mechanism. J. Plant Biol 33:3–14

    Google Scholar 

  23. Llusia J, Peñuelas J (1998) Changes in terpene content and emissions in potted Mediterranean woody plants under severe drought. Can J Bot 76:1366–1373

    CAS  Google Scholar 

  24. Llusia J, Peñuelas J (2000) Seasonal patterns of terpene content and emissions from seven Mediterranean woody species in field conditions. Am J Bot 87:133–140

    PubMed  Article  CAS  Google Scholar 

  25. Llusia J, Peñuelas J, Alessio GA, Estiarte M (2008) Contrasting Species-specific, coumpound-specific, seasonal, and interannual response of foliar isoprenoid emissions to experimental drought in a Mediterranean shrubland. Int J Plant Sci 169:637–645

    Article  CAS  Google Scholar 

  26. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    PubMed  Article  CAS  Google Scholar 

  27. Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    Google Scholar 

  28. Lud D, Buma AGJ, Moerdijk TCW, Huiskes AHL (2003) DNA damage and photosynthesis in Prasiola crispa ssp. antarctica and Sanionia uncinata in response to manipulated UV-B radiation. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, VanDerVies SM, Wolff WJ (eds) Antarctic biology in a global context. Proceedings of the VIIIth SCAR international biology symposium 27 August–1 September 2001, Vrije Universiteit, Amsterdam, The Netherlands, vol 3154. Backhuys Publications, Leiden, pp 69–73

  29. Manetas Y, Petropoulou Y, Stamatakis K, Nikolopoulos D, Levizou E, Psaras G, Karabourniotis G (1997) Beneficial effects of enhanced UV-B radiation under field conditions: improvement of needle water relations and survival capacity in Pinus pinea L. seedlings during the dry Mediterranean summer. Plant Ecol 128:100–108

    Google Scholar 

  30. McKinlay AF, Diffey BL (1987) A reference action spectrum for ultra-violet induced erythema in human skin. In: Passchier WF, Bosnjakovic BFM (eds) Human exposure to ultraviolet radiation: risks and regulations. Elsevier, Amsterdam, pp 83–87

    Google Scholar 

  31. Milchunas DG, King JY, Mosier AR, Moore JC, Morgan JA, Quirk MH, Slusser JR (2004) UV radiation effects on plant growth and forage quality in a shortgrass steppe Ecosystem. Photochem Photobiol 79:404–410

    PubMed  Article  CAS  Google Scholar 

  32. Munné-Bosch S, Peñuelas J, Asensio D, Llusià J (2004) Airborne ethylene may alter antioxidant protection and reduce tolerance of Holm Oak to heat and drought stress. Plant Physiol 136:2937–2947

    Google Scholar 

  33. Newsham KK, Robinson SA (2009) Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biol 15:2574–2589

    Article  Google Scholar 

  34. Nogués S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    PubMed  Article  Google Scholar 

  35. Nogués, S, Allen, DJ, Morison, JIL, Baker, NR (1999) Characterization of stomatal closure caused by Ultraviolet-B radiation. Plant Physiol 121:489–496

    Google Scholar 

  36. Owen S (1998) PhD Thesis, Lancaster University

  37. Paoletti E (2005) UV-B and Mediterranean forest species: Direct effects and ecological consequences. Environ Poll 137:372–379

    Article  CAS  Google Scholar 

  38. Peñuelas J, Llusia J (1999) Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ Exp Bot 42:61–68

    Article  Google Scholar 

  39. Peñuelas J, Llusia J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155(2):227–237

    Article  Google Scholar 

  40. Peñuelas J, Llusia J (2003) BVOCs: plant defense against climate warming? Trends in Plant Sci 8:105–109

    Article  Google Scholar 

  41. Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends in Plant Sci 10(4):166–169

    Article  Google Scholar 

  42. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends in Plant Sci 15:133–144

    Article  Google Scholar 

  43. Peñuelas J et al (2009) Phenology feedbacks on climate change. Science 324:887–888

    PubMed  Article  Google Scholar 

  44. Pio CA, Nunes TV, Brito S (1993) Volatile hydrocarbon emissions from common and native species of vegetation in Portugal. In: Slanina J et al (eds) Proc of Joint Workshop of CEC/BIATEX of EUROTRAC, General assessment of biog emissions and deposition of nitrogen compounds, sulphur compounds and oxidants in Europe. Air pollution research report 47, Aveiro, Portugal, pp 291–298, ISBN 2-87263-095-3

  45. Prieto P, Peñuelas J, Llusia J, Asensio D, Estiarte M (2009) Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiol Plantarum 31:729–739

    Article  Google Scholar 

  46. Ren J, Dai WR, Xuan ZY et al (2007) The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. For Ecol Man 239:112–119

    Article  Google Scholar 

  47. Rozema J, Boelen P, Blokker P (2005) Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environ Poll 137:428–442

    Article  CAS  Google Scholar 

  48. Teramura AH, Tevini M, Iwanzik W (1983) Effects of UV-B irradiation on plants during mild water stress. 1. Effects on diurnal stomatal resistance. Physiol Plantarum 58:175–180

    Article  Google Scholar 

  49. Tiiva P, Rinnan R, Faubert P, Räsänen J, Holopainen T, Kyrö E, Holopainen JK (2007) Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytol 176:346–355

    PubMed  Article  CAS  Google Scholar 

  50. Tingey DT, Manning M, Grothaus LC, Burns WF (1980) Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 5:797–801

    Article  Google Scholar 

  51. Van de Staaij JWM, Bolink E, Rozema J, Ernst W (1997) The impact of elevated UV-B (280–320 nm) radiation levels on the reproductive biology of a highland and a lowland population of Silene vulgaris. Plant Ecol 128:172–179

    Google Scholar 

  52. Yao Y, Yang Y, Ren J, Li C (2006) UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Environ Exp Bot 57:160–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants from the Spanish Government (CGL2006-04025/BOS, CGL2007-64583/BOS, and CGC2010-17172), Consolider-Ingenio Montes (CSD2008-00040), and the Catalan government (SGR2009-458) supported the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joan Llusia.

Additional information

Communicated by J. Zwiazek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Llusia, J., Llorens, L., Bernal, M. et al. Effects of UV radiation and water limitation on the volatile terpene emission rates, photosynthesis rates, and stomatal conductance in four Mediterranean species. Acta Physiol Plant 34, 757–769 (2012). https://doi.org/10.1007/s11738-011-0876-8

Download citation

Keywords

  • UV radiation
  • Mediterranean plants
  • Monoterpenes
  • Sesquiterpenes
  • Terpene emission rates