Skip to main content
Log in

Effects of hydrogen cyanamide on antioxidant enzymes’ activity, proline and polyamine contents during bud dormancy release in Superior Seedless grapevine buds

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript


The effect of hydrogen cyanamide (HC) on dormancy release, antioxidant enzyme’s activity and proline and free polyamine contents were investigated in ‘Superior Seedless’ grapevine buds. HC application caused a sharp decrease of catalase (CAT, EC activity and a transient stimulation during the 5 days following treatment of peroxidase (POD, EC and ascorbate peroxidase (APX, EC activities. This coincided with an accumulation of total free polyamines, especially putrescine (Put). Proline content increased dramatically. There was a strong correlation between APX and POD activities and total free PAs and Put contents implying a possible stimulating effect of the latter compounds on these enzymes. These observations indicate that HC triggers an oxidative stress leading to bud endodormancy release. Afterward, as budbreak started, we observed a rapid proline and Put degradation; this could be responsible for reactivation of growth. Indeed, the decline in Put to (Spd + Spm) ratio, reported here, may be considered as a reliable biochemical marker of bud growth resumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others





Ascorbate peroxidase


Bovine serum albumin




3-Dimethylamino benzoic acid


Hydrogene cyanamide


3-Methyl-2-benzothiazolinone hydrozone hydrochloride monohydrate








Reactive oxygen species






  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. Hort Sci 38:911–921

    Google Scholar 

  • Balandier P, Bonhomme M, Rageau M, Capitan F, Parisot E (1993) Leaf bud endodormancy release in peach trees: evaluation of temperatures models in temperate and tropical climates. Agric Forest Meteorol 67:95–113. doi:10.1016/0168-1923(93)90052-J

    Article  Google Scholar 

  • Ben Mohamed H, Vadel MA, Geuns JMC, Khemira H (2010a) Biochemical changes in dormant grapevine shoot tissues in response to chilling: possible role in dormancy release. Sci Hortic 124:440–447. doi:10.1016/j.scienta.2010.01.029

    Article  CAS  Google Scholar 

  • Ben Mohamed H, Vadel MA, Khemira H (2010b) Estimation of chilling requirement and effect of hydrogen cyanamide on budbreak and fruit characteristics of ‘Superior Seedless’ table grape cultivated in a mild winter climate. Pakis J Bot 42:1761–1770

    Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125. doi:10.1016/S0168-9452(98)00218-0

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Crabbé J, Barnola P (1996) A new conceptual approach to bud dormancy in woody plants. In: Lang GA (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 83–113

    Google Scholar 

  • Cutting JGM, Strydom DK, Jacobs G, Bellstedt DU, Merwe KJVD, Weiler EW (1991) Changes in xylem constituents in response to rest-breaking agents applied to apple before budbreak. J Am Soc Hort Sci 116:680–683

    CAS  Google Scholar 

  • Dokoozlian NK, Williams LE, Neja RA (1995) Chilling exposure and hydrogen cyanamide interact in breaking dormancy in grape buds. Hort Sci 30:1244–1247

    CAS  Google Scholar 

  • Egea J, Ortega E, Martynez-Gomez P, Dicenta F (2003) Chilling and heat requirements of almond cultivars for flowering. Environ Exp Bot 50:79–85. doi:10.1016/S0098-8472(03)00002-9

    Article  Google Scholar 

  • Erez A (1995) Means to compensate for insufficient chilling to improve bloom and leafing. Acta Hortic 395:81–95

    Google Scholar 

  • Fuchigami LH, Nee CC (1987) Degree growth stage model and restbreaking mechanisms in temperate woody perennials. Hort Sci 22:836–844

    Google Scholar 

  • Galston AW, Kaur-Sawhney R (1995) Polyamines as endogenous growth regulators. In: Davies PJ (ed) Plant hormones: physiology, biochemistry, and molecular biology, Kluwer Academic Publishers, pp 158–178

  • Gaspar T, Kevers C, Coumans M, Penel C, Greppin H (1984) Interaction of polyamines or their precursors with the calcium controlled secretion of peroxidase by sugarbeet cells. Experentia 40:696–697

    Article  CAS  Google Scholar 

  • Geuns JMC, Van Loenhout HME, Valcke RLM (1997) Sterols and polyamines in IPT-transformed tobacco plants. Phytochem 44:797–804. doi:10.1016/S0031-9422(96)00631-0

    Article  CAS  Google Scholar 

  • Geuns JMC, Orriach ML, Swennen R, Zhu G, Panis B, Compernolle F, Auweraer MV (2006) Simultaneous liquid chromatography determination of polyamines and arylalkyl monoamines. Analyt Biochem 354:127–131. doi:10.1016/j.ab.2006.03.048

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45. doi:10.1007/s00726-007-0501-8

    Article  PubMed  CAS  Google Scholar 

  • Halaly T, Pang X, Batikoff T, Crane O, Keren A, Venkateswari J, Ogrodovitch A, Sadka A, Lavee S, Or E (2008) Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta 28:79–88. doi:10.1007/s00425-008-0720-6

    Article  Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564. doi:10.1006/bbrc.2000.2601

    Article  PubMed  CAS  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants—a changing perspective. Physiol Plant 116:281–292. doi:10.1034/j.1399-3054.2002.1160301.x

    Article  CAS  Google Scholar 

  • Kishor KPB, Sangam S, Amrutha RN, Sri LP, Naidu KR, Rao KRSS, Sreenath R, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analyt Biochem 105:389–397. doi:10.1016/0003-2697(80)90475-3

    Article  PubMed  CAS  Google Scholar 

  • Noriega X, Burgos B, Pérez F (2007) Short-day photoperiod triggers and low temperatures increase expression of peroxidase RNA transcripts and basic peroxidase isoenzymes activity in grape buds. Phytochem 68:1376–1383. doi:10.1016/j.phytochem.2007.02.003

    Article  CAS  Google Scholar 

  • Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E (2009) Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol 71:403–423. doi:10.1007/s11103-009-9531-9

    Article  PubMed  CAS  Google Scholar 

  • Or E, Vilozny I, Fennell A, Eyal Y, Ogrodovitch A (2002) Dormancy in grape bud: isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci 162:121–130. doi:10.1016/S0168-9452(01)00542-8

    Article  CAS  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genom 3:144–152. doi:10.1007/s10142-003-0094-6

    Article  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant: correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152. doi:10.1104/pp.104.055483

    Article  PubMed  CAS  Google Scholar 

  • Pérez FJ, Lira W (2005) Possible role of catalase in post-dormancy budbreak in grapevines. J Plant Physiol 162:301–308. doi:10.1016/j.jplph.2004.07.011

    Article  PubMed  Google Scholar 

  • Pérez FJ, Vergara R, Or E (2009) On the mechanism of dormancy release in grapevine buds: a comparative study between hydrogen cyanamide and sodium azide. Plant Growth Regul 59:145–152. doi:10.1007/s10725-009-9397-5

    Article  Google Scholar 

  • Saure MC (1985) Dormancy release in deciduous fruits tree. Hortic Rev 7:239–300

    Google Scholar 

  • Shetty K, Wahlqvist ML (2004) A model for the role of the praline-linked pentose-phosphate pathway in phenolic phytochemical biosynthesis and mechanism of action for human health and environmental application. Asia Pac J Clin Nutr 13:1–24

    PubMed  CAS  Google Scholar 

  • Sood S, Nagar PK (2005) Alterations in endogenous polyamines in bulbs of tuberose (Polianthes tuberosa L.) during dormancy. Sci Hortic 105:483–490. doi:10.1016/j.scienta.2005.02.010

    Article  CAS  Google Scholar 

  • Srivastava SK, Rajbabu P (1985) Regulation of bound peroxidase by polyamines and guanidines in maize scuttellum. Phytochem 24:2515–2517. doi:10.1016/S0031-9422(00)80658-5

    Article  CAS  Google Scholar 

  • Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC (1998) Importance of glucose-6-phosphate-dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617. doi:10.1074/jbc.273.17.10609

    Article  PubMed  CAS  Google Scholar 

  • Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161:701–708. doi:10.1078/0176-1617-01096

    Article  PubMed  CAS  Google Scholar 

  • Trejo-Martínez MA, Orozco A, Almaguer-Vargas G, Carvajal-Millán E, Gardea AA (2009) Metabolic activity of low chilling grapevine buds forced to bud break. Thermochim Acta 481:28–31. doi:10.1016/j.tca.2008.09.025

    Article  Google Scholar 

  • Vergara R, Pérez FJ (2010) Similarities between natural and chemically induced bud-endodormancy release in grapevine Vitis vinifera L. Sci Hortic 125:648–653. doi:10.1016/j.scienta.2010.05.020

    Article  CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677. doi:10.1016/j.jplph.2004.08.008

    Article  PubMed  CAS  Google Scholar 

  • Vyas D, Kumar S (2005) Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol Biochem 43:383–388. doi:10.1016/j.plaphy.2005.02.016

    Article  PubMed  CAS  Google Scholar 

  • Walton EF, Clark CJ, Boldingh HL (1991) Effect of hydrogen cyanamide on amino acid profiles in kiwifruit buds during budbreak. Plant Physiol 97:1256–1259. doi:10.1104/pp.97.3.1256

    Article  PubMed  CAS  Google Scholar 

  • Walton EF, Podivinsky E, Wu RM, Reynolds PH, Young LW (1998) Regulation of proline biosynthesis in kiwifruit buds with and without hydrogen cyanamide treatment. Physiol Plant 102:171–178. doi:10.1034/j.1399-3054.1998.1020203.x

    Article  CAS  Google Scholar 

  • Walton EF, Wu RM, Richardson AC, Davy M, Hellens RP, Thodey K, Janssen BJ, Gleave AP, Rae GM, Wood M, Schaffer RJ (2009) A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds. J Exp Bot 60:3835–3848. doi:10.1093/jxb/erp231

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Faust M (1994) Changes of polyamine content during dormancy in flower buds of ‘Anna’ apple. J Am Soc Hortic Sci 119:70–73

    CAS  Google Scholar 

  • Wang SY, Steffens GL, Faust M (1986) Breaking bud dormancy in apple with a plant bioregulator, Thidiazuron. Phytochem 25:311–317. doi:10.1016/S0031-9422(00)85472-2

    Article  CAS  Google Scholar 

  • Wu T, Cao J, Zhang Y (2008) Comparison of antioxidant activities and endogenous hormone levels between bush and vine-type tropical pumpkin (Cucurbita moschata Duchesne). Sci Hortic 116:27–33. doi:10.1016/j.scienta.2007.11.003

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Hortic 122:200–208. doi:10.1016/j.scienta.2009.05.013

    Article  CAS  Google Scholar 

Download references


The authors acknowledge the skilful technical assistance of Hilde Verlinden in polyamine analysis.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Habib Khemira.

Additional information

Communicated by M. Horbowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Mohamed, H., Vadel, A.M., Geuns, J.M.C. et al. Effects of hydrogen cyanamide on antioxidant enzymes’ activity, proline and polyamine contents during bud dormancy release in Superior Seedless grapevine buds. Acta Physiol Plant 34, 429–437 (2012).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: