Skip to main content

Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.)

Abstract

This study examined the influence of salt treatment on the growth parameters (fresh and dry weights), the mineral content (K+ and Na+), total lipid contents, fatty acid composition, yields and chemical composition of the essential oil of safflower (Carthamus tinctorius L.) grown in hydroponics for 2 weeks. Results showed that the application of 50 mM NaCl reduced the fresh weight of aerial parts (shoots and leaves) while it enhanced those of the roots. The reduction of dry weight was found to be more pronounced in the aerial parts. Salt treatment increased markedly the concentrations of Na+ in both plant parts while it reduced those of K+ which resulted in a sharp reduction of K+/Na+ ratio. In response to salt treatment, total lipids contents decreased in both plant parts and great qualitative changes in the fatty acids profiles were observed. Whatever the plant parts analysed, a redirection of the lipidic metabolism towards synthesis of unsaturated fatty acids as revealed by the increase of double bond index and linoleic desaturation ratio was pointed out. The increased unsaturation index was found to be more important in roots than in aerial parts. Such treatment also reduced the essential oil yields and induced marked quantitative changes in the chemical composition of the essential oils from both plant parts. Of all the identified components, oxygenated components display a prominent salt-induced synthesis and/or accumulation in both roots and aerial parts.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Adams R (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured, Carol Stream

    Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker. New York, pp 285–313

  • Ashraf M, Harris PGC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi:10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  • Ashrafi E, Razmjoo K ((2010)) Effect of irrigation regimes on oil content and composition of Safflower (Carthamus tinctorius L.) cultivars. J Am Oil Chem Soc 87:499–506. doi:10.1007/s11746-009-1527-8

    Article  Google Scholar 

  • Baatour O, Kaddour R, Aidi Wannes W, Lachaâl M, Marzouk B (2010) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol Plant 32:45–51. doi:10.1007/s11738-009-0374-4

    Article  CAS  Google Scholar 

  • Bassil ES, Kaffka SR (2002) Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation I. Consumptive water use. Agr Water Manage 54:67–80

    Article  Google Scholar 

  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956. doi:10.1016/j.foodchem.2009.07.055

    Article  Google Scholar 

  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2011) Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant 33:153–162. doi:10.1007/s11738-010-0532-8

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  Article  CAS  Google Scholar 

  • Bourgou S, Bettaieb I, Saidani M, Marzouk B (2010) Fatty acids, essential oil and phenolics modifications of black cumin fruit under NaCl stress conditions. J Agric Food Chem 58:12399–12406. doi:10.1021/jf103415q

    Article  CAS  Google Scholar 

  • Bowles VG, Mayerhofer R, Davis C, Good AG, Hall JC (2010) A phylogenetic investigation of Carthamus combining sequence and microsatellite data. Plant Syst Evol 287:85–97. doi:10.1007/s00606-010-0292-3

    Article  CAS  Google Scholar 

  • Brady CJ, Gibson TS, Barlow EWR, Speirs J, WynJones RG (1984) Salt tolerance in plants. I. Ions compatible organic solutes and the stability of plant ribosomes. Plant Cell Environ 7:571–578

    CAS  Google Scholar 

  • Cecchi G, Biasini S, Castano J (1985) M′ethanolyse rapide des huiles en solvents. Note de laboratoire. Rev Franc Corps Gras 4:163–164

    Google Scholar 

  • Chartzoulakis A, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic 95:39–50

    Article  CAS  Google Scholar 

  • Çiçek N, Çakirlar H (2008) Effects of salt stress on some physiological and photosynthetic parameters at three different temperatures in six soya Bean (Glycine max LMerr.) cultivars. J Agric Crop Sci 194:34–46. doi:10.1111/j.1439-037X.2007.00288.x

    Article  Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Article  CAS  Google Scholar 

  • da Silva EC, Nogueira RJMC, Araujo FP, Melo NF, de Azevedo Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157. doi:10.1016/j.envexpbot.2007.11.010

    Article  Google Scholar 

  • Dajue L, Mandel H–H (1996) Safflower, Carthamus tinctorius L. In: Promoting the conservation and use of underutilized and neglected crops, vol 7. Institute of Plant Genetics and Crop Plant Research. Gatersleben/International Plant Genetic Resources Institute, Rome

  • Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101. doi:10.1007/s11738-009-0384-2

    Article  CAS  Google Scholar 

  • De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 54:69–76

    Article  Google Scholar 

  • Gadallah MAA (1996) Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Plant Growth Regul 20:225–236

    Article  CAS  Google Scholar 

  • Gao WY, Fan L, Paek KY (2000) Yellow and red pigment production by cell cultures of Carthamus tinctorius in a bioreactor. Plant Cell Tissue Organ Culture 60:95–100

    Article  CAS  Google Scholar 

  • Gecgel U, Demirci M, Esendal E, Tasan M (2007) Fatty acid composition of the oil from developing seeds of different varieties of safflower (Carthamus tinctorius L.). J Am Oil Chem Soc 84:47–54. doi:10.1007/s11746-006-1007-3

    Article  CAS  Google Scholar 

  • Gignon A, Matos A-R, Aferay D, Zuily-Fodil Y, Pham-Thi A-T (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann Bot 94:345–351. doi:10.1093/aob/mch150

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    PubMed  Article  CAS  Google Scholar 

  • Hiramatsu M, Takahashi T, Komatsu M, Kido T, Kasahara Y (2009) Antioxidant and neuroprotective activities of mogami-benibana (Safflower, Carthamus tinctorius Linne). Neurochem Res 34:795–805. doi:10.1007/s11064-008-9884-5

    PubMed  Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circ 347. Calif Agric Exp Sta Berkley, CA, p 32

  • Irving DW, Shannon MC, Breda VA, Mackey BE (1998) Salinity effects on yield and oil quality of high linolate and high-oleate cultivars of Safflower (Carthamus tinctorius L). J Agric Food Chem 36:37–42

    Article  Google Scholar 

  • Karray-Bouraoui N, Harbaoui F, Rabhi M, Jallali I, Ksouri R, Attia H, Msilini N, Lachaâl M (2011) Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant. doi:10.1007/s11738-010-0679-3

    Google Scholar 

  • Khadhri A, Neffati M, Smiti S, Nogueira JMF, Araújo MEM (2011) Influence of salt stress on essential oil yield and composition of lemon grass (Cymbopogon schoenanthus L. Spreng. ssp. Laniger (Hook) Maire et Weil). Nat Prod Res 25:108–117. doi:10.1080/14786419.2010.505169

    PubMed  Article  CAS  Google Scholar 

  • Kim H-Y, Kim C–S, Jhon G-J, Moon I–S, Choi S–H, Cho K–S, Chai J-K, Kim C–K (2002) The effect of safflower seed extract on periodontal healing of 1-wall intrabony defects in beagle dogs. J Periodontol 73:1457–1466

    PubMed  Article  Google Scholar 

  • Lee JY, Chang EJ, Kim HJ, Park JH, Choi SW (2002) Antioxidative flavonoids from leaves of Carthamus tinctorius. Arch Pharm Res 25:313–319

    PubMed  Article  CAS  Google Scholar 

  • Li R, Shi F, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Env Exp Bot 68:66–74. doi:10.1016/j.envexpbot.2009.10.004

    Article  CAS  Google Scholar 

  • López-Pérez L, MdC Martínez-Ballesta, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 70:492–500. doi:10.1016/j.phytochem.2009.01.014

    PubMed  Article  Google Scholar 

  • Malkit A, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant Alga Dunaliella salina. Plant Physiol 129:1320–1329

    Article  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280. doi:10.1016/j.pbi.2006.03.002

    PubMed  Article  CAS  Google Scholar 

  • Mondal N, Bhat KV, Srivastava PS (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269. doi:10.1007/s11746-010-1615-9

    Article  CAS  Google Scholar 

  • Naffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 28:137–142. doi:10.1016/j.indcrop.2008.02.005

    Article  Google Scholar 

  • Nogala-Kalucka M, Rudzinska M, Zadernowski R, Siger A, Krzyzostaniak I (2010) Phytochemical content and antioxidant properties of deeds of unconventional oil Plants. J Am Oil Chem Soc 87:1481–1487. doi:10.1007/s11746-010-1640-8

    Article  CAS  Google Scholar 

  • Novruzov E, Shamsizade L (1998) Anthocyans of Carthamus species. Chem Nat Comp 34:514–515

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi:10.1016/j.ecoenv.2004.06.010

    PubMed  Article  CAS  Google Scholar 

  • Pleines S, Friedt W (1988) Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.). Fat Sci Technol 90:167–171

    CAS  Google Scholar 

  • Rammal H, Younos C, Bouayed J, Chakou A, Necerbey N, Soulimani R (2009) Aperçu ethnobotanique et phytopharmacologique sur Carthamus tinctorius L. Phytothérapie 7:28–30. doi:10.1007/s10298-008-0361-8

    Article  Google Scholar 

  • Sehgal D, Raina SN, Devarumatha RM, Sasanuma T, Sasakuma T (2009) Nuclear DNA assay in solving issues related to ancestry of the domesticated diploid safflower (Carthamus tinctorius L.) and the polyploid (Carthamus) taxa, and phylogenetic and genomic relationships in the genus Carthamus L. (Asteraceae). Mol Phylogenet Evol 53:631–644

    PubMed  Article  CAS  Google Scholar 

  • Singh-Sangwan N, Farooqi AHA, Sangwan RS (2004) Effect of drought stress on growth and essential oil metabolism in lemongrasses. New Phytol 128:173–179

    Article  Google Scholar 

  • Stumpf PK (1975) Recent advances in the chemistry and biochemistry of’plant lipids. In: Galhard T, Mercer MI (eds) Academic Press, London, p 95.

  • Viégas RA, Queiroz JE, Silva LMM, Silveira JAG, Rocha IMA, Viégas PRA (2003) Plant growth, accumulation and solute partitioning of four forest species under salt stress. Rev Bras Eng Agric Amb 7:258–262

    Article  Google Scholar 

  • Yu Y, Yang B, Zhou T, Zhang H, Shao L, Duan G (2007) Rapid determination of volatile constituents in safflower by microwave distillation and simultaneous solid-phase microextraction coupled with gas chromatography-mass spectrometry. Ann Chim 97:1075–1084

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Asma Allaoui (Laboratoire des Sciences de l’Environnement, Ecole Nationale d’Ingénieurs de Sfax, Tunisia) for the GC–MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Hosni.

Additional information

Communicated by W. Filek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harrathi, J., Hosni, K., Karray-Bouraoui, N. et al. Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiol Plant 34, 129–137 (2012). https://doi.org/10.1007/s11738-011-0811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0811-z

Keywords

  • Carthamus tinctorius
  • Salinity
  • Growth
  • Mineral content
  • Fatty acids
  • Essential oil